
Retroactive Packet Sampling in P4

Master Thesis

Author: Clemens Klopfstein

Tutor: Georgia Fragkouli
Co-Tutor: Alexander Dietmüller

Supervisor: Prof. Dr. Laurent Vanbever

September 2023 to March 2024

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,

Master’s thesis and any other degree paper undertaken during the course of studies, including the

respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Retroactive Packet Sampling in P4

Klopfstein Clemens

Zürich, 25.03.2024

Non-disclosure agreement protection

Parts of this thesis fall under the Non-disclosure agreement (NDA) set by Intel® and thus are
either blacked out or omitted in this version. Please get in touch with the project’s supervisor if
you need more information.

i

Acknowledgments

I would like to thank Prof. Laurent Vanbever for offering the opportunity to write this thesis.
Furthermore, this thesis would not have been possible without the critical questions and guidance
of my advisors Dr. Georgia Fragkouli and Alexander Dietmüller. Additionally, I would like to
thank Albert Gran Alcoz for the discussions on the Intel® Tofino™ as well as my friends for their
support and satisfying distractions outside this work. Finally, I would like to thank my family for
their support.

ii

Abstract

To enable third parties to verify the performance of individual networks, Retroactive Packet
Sampling (RPS) ensures that a network cannot bias the sample of traffic based on which a monitor
is judging its overall performance. However, deploying RPS is challenging: it requires sampling
primitives that are not available in traditional switches or are too complex for programmable
switches.

This thesis implements RPS for the P4 software switch and the Intel® Tofino™, which requires
grappling with the compute/memory constraints of programmable switches. Specifically, we
explore two different implementations of RPS — one running entirely on the data plane and a
hybrid one running on both the data and control plane — and evaluate the resulting tradeoffs.
We find using a simulator that a Tofino can sample up to 61 Gbit/s (9.5 Mpps) of traffic capacity
while minimizing additional bandwidth to the controller on a reference configuration and using
30% of the total data plane memory. With a more involved controller, a sampling capacity of up
to 180 Gbit/s (28.28 Mpps) can be achieved without additional hardware.

iii

Contents

Declearation of Originality 1

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Contributions . 2
1.4 Overview . 2

2 Retroactive Packet Sampling 3
2.1 Analyzing network traffic . 3
2.2 Packet Sampling . 4

2.2.1 Trajectory Sampling . 4
2.2.2 Delayed Disclosure . 5

2.3 Retroactive Packet Sampling . 5
2.3.1 Resistance to attacks . 6

2.4 RPS Algorithm . 7
2.5 RPS Parameter Analysis . 9

2.5.1 Number of samples N . 10
2.5.2 Collection time T . 11
2.5.3 Quiet time κ . 11
2.5.4 Minimal rate rmin . 12
2.5.5 Selection probability σ . 13
2.5.6 Disclosure probability δ . 13
2.5.7 Tofino™ parameters . 14

2.6 Reference Implementation . 15
2.6.1 Receipt . 15
2.6.2 Buffer management . 16
2.6.3 Expected performance . 16

3 Programmable Data Planes 17
3.1 PISA . 17
3.2 The P4 Language . 18

3.2.1 P4 Features . 19
3.2.2 Storage . 19
3.2.3 Traffic manipulation . 21

iv

CONTENTS v

4 Implementation 22
4.1 Implementation Goals . 22

4.1.1 Goals . 22
4.1.2 Non-Goals . 23

4.2 RPS on the Controller . 23
4.2.1 Header mirroring . 23
4.2.2 Digest mode . 24
4.2.3 Interim conclusion about RPS on the controller 25

4.3 RPS on the Simple Switch . 25
4.3.1 From SHA256 to CRC32 . 26
4.3.2 Buffer access in P4 . 28
4.3.3 Naive implementation . 29
4.3.4 Inverting the RPS Algorithm . 30

4.4 RPS on the Intel® Tofino™ . 34
4.4.1 Stages . 34
4.4.2 Storage . 34
4.4.3 Controller communication . 35
4.4.4 Timestamps . 36
4.4.5 Final implementation . 37
4.4.6 Not considered . 37

5 Evaluation 39
5.1 Hardware resource usage . 39

5.1.1 Methodology . 39
5.1.2 Implementations . 40
5.1.3 Results . 41

5.2 Accuracy . 42
5.2.1 Simulation Setup . 43
5.2.2 Methodology . 43
5.2.3 Implementations . 46
5.2.4 Overview . 46
5.2.5 P4 Reference model . 47
5.2.6 Tofino model . 50

5.3 Performance . 51
5.3.1 Setup . 51
5.3.2 Methodology . 52
5.3.3 Implementation . 52
5.3.4 Controller-based sampling on the Tofino™ . 53

6 Conclusion and Outlook 55
6.1 Future work . 55
6.2 Conclusion . 56

References 58

A Average packet size based on CAIDA traces I

B Trace configuration II

CONTENTS vi

C Evaluation of the ideal RPS Algorithm III
C.0.1 Evaluation . III

Chapter 1

Introduction

1.1 Motivation

The Internet is a decentralised mesh of computer networks, where each network is operated by
an Autonomous System (AS). The best-known operators of AS are Internet Service Providers
(ISPs) that offer customers Internet access to connect to services over the Internet. These ISPs
also provide Service Level Agreements (SLAs), in which they guarantee their customers specific
performance metrics of the connection, such as the minimal packet delivery rate or maximum
latency [1]. Without controlling both endpoints of a path spanning possibly over multiple ISPs
through the Internet, verifying these SLAs is challenging, as ISPs can detect certain measurement
packets such as ICMP [2], and treat them preferable, i.e. prioritise them to exaggerate their
performance. Hence, a solution in which an ISP cannot cheat and the path endpoints do not need
to be controlled by the same party to collect metrics is required. This leads to the need to generate
samples on the network path, requiring the assistance of ISPs and posing the challenge of devising
a monitoring scheme that cannot be cheated on while keeping the performance overhead minimal.
The former follows from the fact that the ISP is self-attesting its performance, and some ISPs have
been caught tampering with requests [3], whilst the latter is needed to remain cost-effective and
scalable, incentivising ISPs to partake.

In 2019, Nikolopoulos et al. [4] proposed Retroactive Packet Sampling (RPS) to address this
issue. By buffering and conditionally releasing small traffic artefacts (samples) containing packet
fingerprints, the sampling fate of a packet is unknown at the arrival time. It is only determined by
a future packet using a probabilistic determination method. Forcing a time between these two
events hinders the ISP from learning the sampling fate early enough to prioritise the samples
and thus prevents prioritisation attacks. To protect the collection system, the monitor, from fake
samples generated by an ISP to manipulate the traffic metrics, samples are collected along the
network path over multiple ISP. Culprits can be identified by comparing samples from different
ISPs and leveraging their business relationships.

We want to evaluate the implications of running RPS in programmable data planes such
as P4 [5]. If possible, ISPs can reprogram their existing programmable data plane devices,
removing the need for additional hardware and thus simplifying the roll-out of RPS, improving
the localisation of Internet performance issues and SLA verification, leading to improved network
transparency.

1

1.2. CHALLENGES 2

1.2 Challenges

With P4 running on top of a switch-oriented hardware architecture, many features commonly
present in high-level languages, such as unbounded loops or freely addressable and allocatable
memory, are missing. This poses a significant challenge to the adaptation of RPS that heavily
relies on iterating over its buffer. Furthermore, P4 devices such as the Intel® Tofino™ only offer
limited persistent memory, enforcing hard bounds on the sampling capabilities.

1.3 Contributions

We adapt the sampling algorithm of RPS from a loop-based form with multiple possible buffer
modifications per packet into a P4-compatible form, requiring a single buffer operation per
packet, overcoming the unbounded loop constraints. Furthermore, we reduce the required bytes
per packet artefact to optimise the in-data plane memory and evaluate a hybrid approach to
increase buffer capacities. Using the results of our simulator, we show that the modified algorithm
achieves the same sampling accuracies as the original algorithm. Evaluating the implementation
using a simulation of the Tofino™ with parameters presented in the RPS publication, a maximal
performance of 9.5 Mpps, equivalent to 61 Gbit/s with an average packet size of 800 bytes used in
today’s Internet, is achieved.

The main contributions of this work are:

• Introducing the changes needed and tradeoffs faced to adapt the RPS Algorithm from the
paper to the P4-programmable Intel® Tofino™.

• Providing multiple RPS implementations in P4 with different characteristics, focusing on the
memory bottleneck.

• Evaluating the accuracy and sampling performance of the provided implementations using
a simulator.

1.4 Overview

In Chapter 2, we briefly present RPS with a focus on the effects of the parametrisation on the
buffer size, as this will be later identified as a bottleneck. In Chapter 3, the P4 [5] language is
presented, and the core features set of programmable data planes is introduced. We then present
multiple implementations of RPS in P4, moving from a naive implementation with limitations to
a Intel® Tofino™ compatible implementation, documenting the design decisions. The proposed
implementations are evaluated in Chapter 5 with respect to the hardware usage, the sampling
accuracy using a simulator, and the performance on actual hardware. Finally, a discussion and
outlook are presented in Chapter 6.

Chapter 2

Retroactive Packet Sampling

Retroactive Packet Sampling provides traffic samples in the form of small artefacts called receipts
to a trusted monitor outside of the ISP’s control to verify the ISP’s delay and loss properties. The
sampling algorithm running on the ISP’s untrusted hardware uses a combination of buffering and
hash functions with strong randomisation properties to reduce the ISP’s impact of misbehaviour.
With well-chosen parameters for the algorithm, the monitor can determine the desired metrics
with pre-defined statistical accuracies solely based on the artefacts, called disclosures, sent to the
monitor. RPS can detect misbehaving ISPs down to an inter-ISP link, with business incentives
between ISPs leading to the exact determination of the culprit.

We first introduce the need for network traffic analysis, followed by introducing two sampling
approaches. Afterwards, the general concept behind RPS, including the resistance to attacks, is
described. This is followed by the introduction of the sampling algorithm (RPS Algorithm) itself
and a discussion of the parameters is followed. The chapter concludes with a brief introduction to
the reference implementation.

2.1 Analyzing network traffic

Analysing network traffic is important due to many factors. On one side, different services require
different traffic properties, while on the other side, insights into the network help troubleshooting
and capacity planning. Whilst RPS is mainly designed to enforce QoS properties such as SLAs, it
can also be used for network troubleshooting.

Quality of Service (QoS) Quality of Service mechanisms help applications receive the necessary
network resources and operate without degrading quality. Requirements for telephony over the
Internet (VoIP) and video streaming differ, as humans are sensitive to minor disturbances in
real-time voice communication, while video players can fetch content ahead of time and buffer it.

Network troubleshooting Tracking errors in large networks is complex [6]. Network analytics
help to find network issues by reporting real-time information about the network state. Seeing a
packet’s trace through the network drastically speeds up the localisation of misconfiguration and
hardware faults.

Capacity planning With extensive networks and different traffic forwarding rules, tracking
the network’s overall state is non-trivial [6]. Traffic might be split to better utilise the available

3

2.2. PACKET SAMPLING 4

bandwidth or cost-optimised paths may be chosen. In the case of link failures, alternative paths
need to be selected, and after resolving the issues, traffic needs to be reallocated to the link.
Analysing the network traffic helps find underutilised links and detect bottlenecks.

2.2 Packet Sampling

Computer networks often consist of many devices interconnected by various topology patterns.
Some exist solely as local area networks, for example, in a data centre, while others span continents
and consist of multiple self-regulated sub-networks such as the Internet. Resulting in complex
configurations hard to understand [6]. In addition to the complex state, traffic rates in the
hundreds of gigabits per second generally overwhelm monitors that determine traffic metrics [7].
Over the past decades, network researchers and engineers have implemented various algorithms
that only look at traffic subsets by sampling packets. These algorithms are tailored to specific
traffic metrics and patterns and shed insights into the network operations. With sampling only
a subset of the packets, overall monitor resources can be efficiently used, and large amounts of
traffic can be analysed.

But with only a subset being sampled, two questions are opened:

1. How can one decide if a packet should be sampled?

2. How can exploiting the sampling primitive be prohibited or reduced?

The following sections introduce two specific types of sampling relevant to this work.

2.2.1 Trajectory Sampling

In 2001, Duffield et al. [8] presented a sampling technique called Trajectory Sampling, used to
determine if a packet should be sampled independently on the sampling node using hash
functions. This results in a consistent sampling over the entire network.

Consistent sampling The packet must be sampled at all path nodes to derive statistics on a
packet path or trajectory. This requirement is called consistent sampling. Consistent sampling
defines the behaviour of a packet p being sampled on all observation points in the network, given
that it is not dropped. Given two consecutive nodes x and y, then:

y samples consistently := p sampled at x =⇒ Pr[p sampled at y|p received at y] = 1 (2.1)

Trajectory sampling algorithm A hash function over a constant packet part can consistently
sample packets in a network Algorithm 1. The constant fields of network packets are all fields that
are not modified by network routers and switches. Modifiable fields in a packet include the Time
To Live (TTL) in the IP header and others. If the calculated hash value is below a certain threshold,
set to determine the sampling percentage, the hash is sent to a monitor. If enough bytes are
incorporated into the hash and the hash function has good randomisation properties, the packet
hashes can be reliably used for packet identification over an entire network, as the probability of a
different packet on a trajectory having the same hash is low, due to the randomisation properties
leading to few hash collisions.

Duffield et al. [8] used a generic modulo operation to calculate the hash value, which was
chosen according to the traffic intensity and length of the incorporated data. Carle et al. [9] used
CRC and MD5 checksum to generate digest over the first 40 bytes modulo the immutable fields.

2.3. RETROACTIVE PACKET SAMPLING 5

Algorithm 1 Possible Trajectory Sampling Algorithm

1: procedure TrajectorySampling(p : packet)
2: if Hash(immutable(p)) ≤ Threshold then
3: Send hash to the monitor
4: end if
5: end procedure

Vulnerability to attacks Although the sampling algorithm is capable of consistent sampling and
packet tracking over a network, a significant flaw is the predictability of the sampling decision.
An ISP can determine if the packet is sampled at the time of its arrival at the device and decide
to forward it on a faster path, i.e. prioritise it or use a path with less loss. From an outside
observation, not controlling the sender and receiver, the delay and loss reported are better than the
actual performance. Thus, an ideal sampling algorithm should make it complicated or expensive
for a malicious ISP to lie about its performance.

2.2.2 Delayed Disclosure

A different sampling approach that aims to cheat on the performance metrics is called delayed
disclosure, where samples are only determined after a certain time, assuming the network operator
has already forwarded the packet. The main characteristic of this sampling type is using a buffer
to store packets or packet artefacts for a certain period until a decision to sample a packet or its
artefact from the buffer is made. This sampling approach has the advantage that a malicious actor
cannot determine whether an arrived packet will be sampled, as this decision lies in the future.
Examples of such algorithms are Network Confessional [10] or PAAI-1 [11].

2.3 Retroactive Packet Sampling

Retroactive Packet Sampling(RPS) [4] is a sampling technique introduced in 2019 by Nikolopoulos
et al. addressing the issues of packet tracking over multiple domains1 (ISPs, AS) without trusting
the operators of the sampling algorithm. Motivated by the desire to provide more network
transparency, such as the information where packets are dropped or what delay is added, and
detect traffic prioritisation, a combination of consistent sampling and delayed disclosure was used
to create a new sampling algorithm. This work refers from now on to the publication [4] by
Nikolopoulos et al. as RPS paper.

Sampling infrastructure Packets sampled at the ISP network edges by a sampling node as
displayed in Figure 2.1. A small artefact called receipt is generated for every incoming packet.
Based on the sampling scheme introduced later, a receipt is chosen as a sample, referred to as
a disclosure and sent to the monitor. Using the consistent sampling properties, every sampling
node creates the same disclosures - unless a packet is dropped. Based on these observations, the
monitor determines the packet loss locality at a granularity of a link between two sampling nodes.
The delay and loss can be determined on an arbitrary sub-path between sampling nodes using
the obtained disclosures. All sampling nodes are untrusted as they estimate the performance of
an ISP and thus are a likely target for modifications to exaggerate the performance metrics. The

1This work uses ISPs, ASs and domains interchangeably

2.3. RETROACTIVE PACKET SAMPLING 6

monitor is trusted to not exaggerate performance metrics. In the ideal case, disclosures are made
publicly available by an RPS framework and thus allow everybody to implement their monitor,
reducing the need for trusting a third party. To infer additional information about packets, the
first node not only sends a disclosure to the monitor but also sends metadata of the packet, such
as the used protocols or ports, to the monitor. This additional information is used to index the
network streams introduced later.

ISP B
untrusted

Out A In B Out B In C

Properties A - B Properties B - B Properties B - C

Trusted
Monitor

Receipt

ISP A
untrusted

ISP C
untrusted

Metadata

Figure 2.1: Setup for Retroactive Packet Sampling. Every ISP on the path provides the collected
disclosures to the trusted monitor. The monitor can then infer the loss or latency of the flow
between the client and server up to a granularity of an inter-sampling node link.

2.3.1 Resistance to attacks

With the sampling nodes running under the control of the evaluated ISPs, fake receipts or
disclosures can be generated, and traffic can be prioritised. The former attack is detected and
localised due to the consistent sampling properties of the sampling algorithm, leading to hurt
business relationships between the ISPs. The latter attack is made expensive by the delayed
disclosure properties of RPS.

Fake receipts The fake receipts attack can be split into multiple categories: adding fake receipts,
modifying receipts and dropping receipts. The monitor catches all of these attacks:

Add A malicious ISP sends made-up receipts as disclosures to the monitor, hoping to influence
the performance estimates. However, the consistent sampling primitives ensure that a packet
is either sampled by everybody (except if it is lost) or by nobody. Therefore, the monitor will
receive a superfluous disclosure and can reject it.

Modify When changing parts of a disclosure, such as the time of arrival, an ISP can pretend to have
received a packet earlier and thus pretends to have a minor delay on the link than there truly
is. However, due to the consistent sampling, the next node selects the same packet (receipt)
as disclosure and sends the actual arrival time. The monitor determines the link delay, and
due to the time shift, the perceived delay to the next node will be more significant than in
reality. The monitor cannot determine which ISP is responsible for the increased delay so that
it will blame both ISPs. However, both ISPs have access to the wire and can run telemetry
on it; the second ISP can determine that there was no congestion or reason for additional
delays and thus blame the malicious IPS, which damages the business relationships and
incentivises the refrain of such actions.

Drop A malicious ISP can also drop disclosures instead of sending them to the monitor. However,
there is no incentive to do this, as it will be held accountable for the loss, as the ISP on the

2.4. RPS ALGORITHM 7

other side of the link will collect the disclosure.

Attacks could also be described for receipts, but the effects are not mentioned here as only a few
are selected by the sampling scheme and receipts that are not selected do not impact the metrics
the monitor collects.

Priorization attack A prioritisation attack occurs when a malicious ISP forwards ”disclosure”
packets over a link with lower latency or loss. As seen before, trajectory sampling is vulnerable to
this attack. The RPS makes such attacks unlikely by enforcing receipts to be stored long enough
before being disclosed. The malicious ISP in the attack scenario would wait until the disclosures
are determined and then send them over the good path. With ISPs such as Cogent guaranteeing
round trip times below 45 ms in North America [1], buffering receipts for 50 ms would make the
attack infeasible as a link with latency −5 ms would be needed such that the packets arrive in
due time at the next sampling node to honour the SLA. The proof that RPS achieves the attack
resistance can be found in the RPS paper.

2.4 RPS Algorithm

The RPS algorithm determines the sampling fate of every packet that arrives at a node. Using
hash functions with strong randomisation properties, an incoming packet is either chosen to be a
direct disclosure that triggers the delayed disclosure of receipts from the buffer or the packet’s
artefact is stored as a receipt in the buffer. Delayed disclosures are receipts that are old enough
and share properties with a direct disclosure.

Determining disclosures The RPS Algorithm (Algorithm 2) creates for every incoming packet an
artefact called Receipt, consisting of a flowid that identifies the packet stream, a timestamp containing
the arrival time of the packet and a digest, serving as a ”packet fingerprint”. This fingerprint is
calculated using a hash function with strong randomisation properties over immutable packet
parts to enforce consistent sampling. The sampling node has a fix-sized buffer where every created
receipt is stored, with old receipts being overwritten by new ones. Based on the digest and the
packet stream’s rate, it is decided if the receipt is promoted to a direct disclosure (line 5). If not,
the algorithm terminates; otherwise, the receipt is sent to the monitor (line 6), and the process of
finding delayed disclosures is initiated (line 10). Iterating over the entire buffer, all receipts with
the same flowid are removed and checked to be old enough (line 12) and it is checked if the hash
of the buffered receipt and the direct disclosure fulfil a specific criterion (line 15). If both checks
succeed, the packet is sent to the monitor as a direct disclosure (line 16).

2.4. RPS ALGORITHM 8

Algorithm 2 Retroactive Packet Sampling Algorithm [4]

1: procedure RetroactiveSampling(p : packet)
2: R′ ← Receipt(p, currentTime)
3: Add R′ at the tail of the circular receipt buffer
4: r ← packetRate(R′. f lowID)′

5: if DiscHash(immutable(p)) ∈ DiscRange(r) then
6: Emit receipt R′.
7: if LateDisclosure(f lowID) then
8: Emit warning.
9: end if

10: for all Receipts R′ in receipt buffer with R. f lowID = R′. f lowid do
11: Remove R from the receive buffer.
12: if (currentTime− R.time) ≤ κ − µ then
13: continue
14: end if
15: if Hash(R.digest, R′.digest) ∈ Range then
16: Emit receipt R.
17: end if
18: end for
19: end if
20: end procedure

Disclosures and Receipts When arguing about receipts and disclosures, it is important to note,
that they have the same data representation. There is no difference between them - the sampling
algorithm sends a receipt to the monitor. However, to reason about the algorithm and its effects,
the term direct disclosure is used to refer to a receipt being sent to the monitor on line 6 of the
algorithm, while a delayed disclosure is a receipt that is sent to the monitor in line 16 of the RPS
Algorithm.

buffer sizeoverwritten

d1 r2 r3 r5 r6 r7 r8 r9 r10 d2

quiet time

time

Figure 2.2: Buffer overview: disclosure d1 and receipt r2 have been overwritten, receipt r6 is
picked by disclosure d2 as a delayed disclosure, while receipts r9 and r10 are too new to be
considered. The receipts r2 and r9 would have been chosen as delayed disclosures if the buffer
had been larger and the disclosure d2 had arrived later. The quiet time is the time to enforce the
delayed disclosure properties.

Late disclosure With a circular buffer, old entries are overwritten to make space for new ones.
Although the RPS Algorithm removes all receipts of a flow upon a direct disclosure, this might
not happen early enough in some cases, and old receipts are dropped (Figure 2.2). As not sending
a disclosure to the monitor indicates a packet loss, the algorithm informs the monitor with a late

2.5. RPS PARAMETER ANALYSIS 9

disclosure warning if the previous disclosure is not in the buffer anymore. This warning points to
the subsequent receipt in the buffer so that the monitor can determine the timespan of the missed
receipt of the node.

Flows RPS determines the packet latency and the loss rate on the granularity of flows, which
are identified by a flowid. Contrary to the TCP flows, identified by the 5-tuple, RPS flows are
built upon IP address prefixes, combining the source and destination address prefixes to a flow
identifier. As the flows do not allow for distinguishing HTTP and HTTPS traffic based on the port
number, aggregates can be defined. A flow can be further split into smaller aggregates using the
initial metadata sent to the monitor. Aggregates are not exclusive to a flow and can be defined
across multiple flows. However, as introduced in Section 2.5, these aggregates might not fulfil the
algorithm’s criteria and thus require more time until enough samples are collected to determine
the target metrics with statistical guarantees.

RPS does not limit the number of flows present at any given time,

2.5 RPS Parameter Analysis

So far, the RPS Algorithm was only introduced on a functional level without providing actual
parameters such that the monitor can make statistically relevant claims. In this section, all
parameters that control the algorithm are introduced and related to the size of the circular buffer
β, as this will be a crucial challenge to overcome in the P4 implementations later presented in
this thesis. Furthermore, the authors of the RPS paper designed the algorithm to use as little
memory as possible since memory for buffering in networking is expensive. An operator defines
the (γ, ε)-accuracy for the desired metric and the time T, in which enough samples should be
collected to honour the statistical relevance of the claims made. Additionally, the operator specifies
the quiet time κ, which must be chosen to reduce prioritisation attacks. Further parameters are
the minimal rate rmin, which every flow must hold. Lastly, the probability of a direct disclosure δ
and the selection probability σ are introduced.

The analysis shows the strong impact of the parameter choice of rmin and σ regarding the
required buffer.

Parameter localisation As a sampling node is placed at each side of an inter-ISP link, the
parameters must be chosen to satisfy the properties of this individual link’s traffic. Hence, an ISP
has to run an instance of RPS at every incoming and outgoing link, i.e. at every border router.
The tracking of flows over multiple ISPs by the monitor and the needed configuration for this is
out of the scope of this work.

Calculating the buffer size The parameters influence the buffer size required to collect the
required samples specified by the operator. To foreshadow the connection between the parameters,
the formula for the buffer size of node i labelled βi is presented here:

Nγ,ε ≤ r · T · ((1− δr)
rκ − (1− δr)

r βi
Ri) · σ (2.2)

In Equation (2.2), r represents the flow’s rate, and Ri is the peak overall traffic rate observed at
the node i. The red part represents the probability that the packet is not disclosed during the
quiet period, and the blue part represents the probability that the packet does not suffer a late
disclosure due to the buffer being too small.

2.5. RPS PARAMETER ANALYSIS 10

The paper [4] also presents the formula for finding the ratio of the minimal buffer size β
R :

min
δr∈(0,1−e

−1
κ·rmin)

{
β

R

}
=

ln
(
(1− δr)

rminκ − Nγ,ε
rmin·T·σ

)
ln (1− δr) rmin

(2.3)

Using the resulting ratio, the generally required buffer size can be obtained as follows:

β∗ = R∗ · min
δr∈(0,1−e

−1
κ·rmin)

{
β

R

}
(2.4)

Substituting R∗ with the sampling node’s peak observed rate Ri, the required buffer size βi can
be calculated. Hence, when changing from 2.5 Mpps (≈ 15 Gbit/s) to 25 Mpps (≈ 150 Gbit/s)
of peak observable overall traffic, the buffer size also needs to be scaled, assuming the smallest
flow’s rmin remains identical. The RPS paper appendix can be consulted for more details.

2.5.1 Number of samples N

The first input parameter is the minimal number of samples N needed to show, whether an SLA
is honoured. There are three distinct elements:

Accuracy The parameter of the accuracy is specified as a (γ, ε) tuple, where γ represents the confidence
of the result whilst ε represents the error rate. In the words of the RPS paper authors: ”γ is
the probability that the relative estimation error is below ε” [4].

Loss Due to the sampling, the collection of a finite amount of observation, the lower bound for
the loss must be set, such that enough samples are collected to form a statistically significant
statement. A standard value for this lossmin is 0.1%, as large ISPs such as Cogent guarantee a
delivery rate of 99.9% [1, 4].

Delay When delays are measured, these are referred to by their quantile χ. For example, the tail
latency can be estimated using the 99-th quantile.

As the number of samples for small lossmin (≪ 50%) are larger than the required number of
samples with χ > 50%, this parameter for the delay is omitted from now on and only the lossmin
is referenced [4]. With an (95, 10) accuracy and a 0.1% minimal detectable loss, the minimal
number of samples to collect is around 380′000, requiring 9 MB of buffer space. Reducing the
error level or increasing the confidence, the number of required samples drastically spikes up to
108 (Figure 2.3a), requiring large buffers, depending on the parameter choice, even infinite-sized
buffers. Reducing the confidence or increasing the error, such as (90, 10) or (95, 12.5), leads
to around 200′000 required samples (Figure 2.3b) and a buffer size of 5.5 MB. Given that the
minimal loss is determined in SLA, lossmin = 0.1% is seen as a constant and thus is not part of the
parameter optimisation.

2.5. RPS PARAMETER ANALYSIS 11

0
20

40
60

80
100

Confidence interval

0%
20%

40%

60%

80%

100%
Err

or

100

102

104

106

108

1010

Nr
 sa

m
pl

es
 w

ith
 lo

ss
m

in
: 0

.1
%

Numbers of required samples with lossmin: 0.1%

100

101

102

103

104

105

106

107

108

(a) Overall input space on a logarithmic scale,
showing the drastic increase of the required
number of samples with a low error rate.

60
65

70
75

80
85

90
95

Confidence interval

10%
12.5%

15%
17.5%

20%
22.5%

25%
27.5%

30%

Err
or

50K
100K
150K
200K
250K
300K

350K

Nr
 sa

m
pl

es
 w

ith
 lo

ss
m

in
: 0

.1
%

Numbers of required samples with lossmin: 0.1%

50K

100K

150K

200K

250K

300K

350K

(b) Zoom onto a realistic subset of target accura-
cies using a linear scale, showing the benefits of
a reduction in the error level.

Figure 2.3: Number of required samples to achieve an (γ, ε)-accuracy under the loss of 0.1%. The
x-axis represents the confidence, and the z-axis represents the error rate.

2.5.2 Collection time T

The collection time T determines the time interval for the collections of the N samples. The RPS
paper suggests a value of 10 min as default. Hence, the monitor can estimate the loss or latency
after T minutes with a (γ, ε) accuracy. At 2.5 Mpps and σ = 1%, around 10 MB of buffer are
required. Doubling the collection time reduces the buffer size by 2x, whilst further increasing the
time eventually leads to a converging buffer size of 3 MB (Figure 2.4) for σ = 1% and R∗ = 2.5
Mpps. The selection probability σ has a substantial influence on the buffer size for collection times
below 20 min, as the buffer size for 6 min with σ = 1% is infinitely large, whilst, with σ = 1.5%,
only 12 MB are required.

0.5

1.0

1.5

2.0

M
Re

ce
ip

ts

101 102

Time [min]

5

10

15

20

25

M
By

te
s

Buffer size based on T and
 :95% : 10%, lossmin: 0.1%, : 100 ms, rmin: 155Kpps

1%
1.5%
2%
2.5%

Figure 2.4: Buffer size based on the collection time T at R∗ = 2.5 Mpps ≈ 15 Gbit/s

2.5.3 Quiet time κ

The quiet time also called quiet period κ, defines the minimal age of a receipt for a delayed
disclosure to the direct disclosure. Combined with the jitter margin µ that aims to compensate
for packet jitter and thus improve the consistent sampling performance, it is the key factor for
ensuring resistance against prioritisation attacks. The argument, including the proof for the
resistance, can be found in the RPS paper. The larger κ, the smaller the benefit of a prioritisation

2.5. RPS PARAMETER ANALYSIS 12

attack, with the highest benefit if the ISP does not cheat. The RPS paper authors suggested 100 ms
for κ for the current Internet usage. To determine a well-suited κ, the inequality κ ≫ db − dg can
be used where dg is the latency of the best path and db the latency of the worst path of an ISP.

The buffer size increases linearly with the quiet time, roughly doubling from 8 MB at 100 ms,
to 19 MB at 200 ms, reaching 100 MB at 1 sec with σ = 1% (Figure 2.5). Setting κ to 0 removes the
requirement for a buffer and reduces the RPS Algorithm to a simple trajectory sampler.

Increasing σ results in noticeable smaller buffers for κ ≥ 200 ms, around 2/3 of memory are
needed at 1000 when σ is increased by half a percentage.

0

2

4

6

8

M
Re

ce
ip

ts

1.0 10.0 100.0 1000.0
 [ms]

0

20

40

60

80

100

M
By

te
s

Buffer size based on : and
 :95% : 10%, lossmin: 0.1%, rmin:155Kpps, T: 10 min

1%
1.5%
2%
2.5%

Figure 2.5: Buffer size based on the quiet time κ at R∗ = 2.5 Mpps ≈ 15 Gbit/s

2.5.4 Minimal rate rmin

To guarantee the buffer is large enough for collecting the specified number of samples, a minimal
rate rmin needs to be fixed. Every flow must always have a bandwidth larger than rmin to achieve
the target sampling performance. If a flow has a high rate, there are too few direct disclosures
chosen compared to the buffer capacity, and thus there are not enough slots to store all receipts.
This results in fewer candidates for the delayed disclosure and, in the end, fewer direct disclosures.
RPS does not allow for arbitrary small flows, as it requires a minimal flow rate of 40 to 90 Kpps,
depending on the conditional selection probability σ, as smaller flow rates lead to the requirement
of an infinite buffer size (Figure 2.6). Increasing rmin leads to smaller buffer sizes due to the higher
traffic intensity, which holds more sample collection opportunities. However, the buffer size does
not converge to 0, as some buffering is required to maintain the robustness against prioritisation
attacks.

Again, the memory requirement can be reduced by over 2x by increasing σ from 1% to 1.5% at
minimal rates below 160 Kpps.

2.5. RPS PARAMETER ANALYSIS 13

0.5

1.0

1.5

2.0

M
Re

ce
ip

ts

60K 80K 100K 120K 140K 160K 180K 200K
rmin [pps]

5
10
15
20
25

M
By

te
s

50Kpps to 200Kpps
Buffer size based on rmin and

 :95% : 10%, lossmin: 0.1%, : 100 ms, T: 10 min

1%
1.5%
2%
2.5%

0.5

1.0

1.5

2.0

M
Re

ce
ip

ts

0K 100K 200K 300K 400K 500K 600K 700K 800K
rmin [pps]

5

10

15

20

25

M
By

te
s

Buffer size based on rmin and
 :95% : 10%, lossmin: 0.1%, : 100 ms, T: 10 min

1%
1.5%
2%
2.5%

Figure 2.6: Buffer size based on the minimal rate rmin at R∗ = 2.5 Mpps ≈ 15 Gbit/s

In the RPS paper, rmin is set to 155 Kpps, as this corresponds to a saturated OC-12 (Optical
Carrier 12) link at an average packet size of 500 bytes. These OC links are commonly used in the
backbones of ISPs [12]. Our analysis of CAIDA [13] traces from the year 2018 showed an average
packet size of 800 bytes (Appendix A) and we will use rmin = 200 Kpps, resulting in 1.28 Gbit/s.
This is equivalent to a fully utilized OC-24 or a semi-utilized OC-48 link [14].

2.5.5 Selection probability σ

The conditional selection probability σ determines the proportion of the delayed disclosure
candidates that should be disclosed. With an infinite buffer, the σ determines how much overall
traffic is sampled. Increasing σ leads to more collected samples and thus a smaller buffer size
(Figure 2.6, Figure 2.4). In the RPS paper, it is suggested to use σ = 1%, for the Internet as it is a
rate technically supported by network devices, such as Cisco’s IOS NetFlow [15].

Our analysis has shown the drastic impact of increasing σ for short collection times (≤ 6 min),
quiet times larger than 200 ms and minimal rates below 160 Kpps. This could suggest that at least
σ = 1.5% should be used to benefit from the reduced memory requirements. Whilst this is a good
suggestion for sampling nodes observing a small traffic capacity, devices observing hundreds of
gigabytes might not be able to support or sustain higher selection rates.

2.5.6 Disclosure probability δ

The direct disclosure probability δ determines how often a direct disclosure is generated and
thus also defines the approximate frequency of clearing the flow’s receipts. Due to the flow
rate ranges, multiple δ can be used with thresholds. Together with the buffer size β, it is the
only parameter that needs to be computed. To obtain δ, β has to be calculated first as the direct
disclosure probability is chosen to minimise the late disclosures whilst achieving the required
number of samples with minimal buffer size. Setting δ too high results in too few disclosures, as
the proportion of the buffered receipts outside and inside the quiet period is too small, leading to
too many samples falling into the quiet time. This occurs because the receipts are flushed faster
than needed, and the following direct disclosure occurs earlier. If δ is set too low, receipts are

2.5. RPS PARAMETER ANALYSIS 14

removed from the buffer due to the limited space, and thus, fewer samples are collected, possibly
requiring more time to reach the targeted number of samples.

Regulating δ The RPS paper suggests using two to three values of δ to control the number of
samples collected. In the base case, two values are used with a threshold, at which the δ is
changed. With the main concern being collecting enough samples, δ is reduced if the flow rate
exceeds a certain rate, reducing the number of collected samples. This is needed as the monitor
only requires a fixed size of samples over a pre-defined time; collecting too many (> 2x) samples
uses collection bandwidth without improvements for the target accuracy.

Finding δ Finding δ means defining an operational scheme, based on Equation (2.2) and a
further inequality from the RPS paper. Given these equations, tuples r, δ that satisfy the equation’s
lower bounds can be found, and from this, an operational scheme can be made. As the RPS
paper did not mention how exactly the thresholds were fixed, testing the parameters is needed to
validate their efficiency.

2.5.7 Tofino™ parameters

The Tofino™ imposes strict memory size constraints as later introduced in Section 4.4.2, and during
the evaluation, the reference parameters introduced in this chapter are used for compatibility
reasons with other sampling nodes. Nevertheless, we present the maximal sampling capacity
based on two cases: (1) The theoretically achievable performance based on the available buffer size
scaling rmin, allowing up to 30 Gbit/s sampling capacity. (2) The performance under optimisation
of the parameters, increasing the sampling capacity up to 48 Gbit/s.

Scaling rmin As previously introduced with rmin, the parameter is chosen based on the OC link
capacity, resulting in a flow to link mapping. As links are upgraded with increasing capacity
needs, changing the minimal rate can be a viable option for operators. With σ = 1%, an increase
to a minimal rate of 500 Kpps already leads to 4 Mpps (25 Gbit/s) of sampling capacity, doubling
the capacity achievable at 155 Kpps (Figure 2.7). The returns diminish after 500 Kpps, converting
towards a sampling capacity of 4.7 Mpps (30 Gbit/s) per pipeline. The ledges observable at
around 575 Kpps and 950 Kpps are caused by the optimisation behaviour of the used Python
optimiser.

10

20

30

G
bi

t/
s

0K 200K 400K 600K 800K 1000K 1200K
rmin [pps]

2

4

R
* [

M
pp

s]

R* based on rmin and
 :95% : 10%, lossmin: 0.1%, : 100 ms, T: 10 min

1%
1.5%
2%
2.5%

Figure 2.7: Sampling capacity with scaling rmin using the available 4 MB of receipt buffer available
in a single Tofino™ pipeline. Rate based on an average packet size of 800 bytes.

2.6. REFERENCE IMPLEMENTATION 15

Opimising parameters If parameter relaxation is possible, we propose a selected set that
increases the sampling throughput by over 50%, showing already significant benefits for rates
at 100 Kpps, allowing for a greater variety of flows to be sampled. These optimisations could
be considered after increasing σ on both sampling nodes, or if the increase is impossible due to
technical limitations. The first optimisation we propose is to reduce the accuracy from (95%, 10%)
to (90%, 15%), by relying on the continuous arrival of data and the assumption of running the
monitor over an extended period of hours. This is also the motivation behind increasing the
collection time to 15 minutes. The monitor can continuously determine the metrics, thus stretching
the collection time. Furthermore, we propose to reduce κ by one-fifth to 80 ms in favour of tracking
smaller flows over a high prioritisation resistance. Using these parameters supports small flows,
as even with 400 Kpps and σ = 1%, 6.53 Mpps (41 Gbit/s) can be supported per pipeline. At 155
Kpps, 5.6 Mpps (35 Gbit/s) are supported, with larger σ even supporting rates below 50 Kpps at
4 Mpps (25 Gbit/s). Overall, the capacity converges towards 7.1 Mpps (55 Gbit/s).However, the
difference in σ above 400 Kpps becomes insignificant.

10

20

30

40

G
bi

t/
s

0K 200K 400K 600K 800K 1000K 1200K
rmin [pps]

2

4

6

R
* [

M
pp

s]

R* based on rmin and
 :90% : 15%, lossmin: 0.1%, : 80 ms, T: 15 min

1%
1.5%
2%
2.5%

Figure 2.8: Sampling capacity with optimized parameters using the available 4 MB of receipt
buffer available in a single Tofino™ pipeline. Rate based on an average packet size of 800 bytes.

2.6 Reference Implementation

For comparing all further implementations, a reference implementation was implemented to be as
faithful as possible to Algorithm 2. As this is not about optimising the reference implementation,
only a naive implementation was done.

2.6.1 Receipt

The receipt is the record stored per packet in the receipt buffer. As presented in theRPS paper’s
appendix, they consist of 12 bytes: 6 bytes for the flowid, 2 bytes for the timestamp in the millisecond
resolution and 4 bytes for the digest that identifies the packet.

Flow identifier The flow identifier flowid was initially chosen as the combination of the /24
prefix of the source and destination IP address. Although the size of 6 bytes was kept, experiments
showed that the CAIDA traces could not satisfy the required per-flow minimal rates of rmin ≥ 155
Kpps. Hence, it is assumed that defined flows satisfy rmin, even with this 6 bytes long flowid.

Digest The packet digest allows for the packet identification in combination with the flowid
across multiple nodes; it is the packet’s fingerprint. The RPS paper’s implementation computes the
digest over the packet’s first 48 non-mutable bytes. Ideally, this packet fingerprint is calculated

2.6. REFERENCE IMPLEMENTATION 16

over the entire packet modulo the variable field, but this is a time- and computationally expensive
operation in the network. The provided implementation deviates from both mentioned approaches.
It uses the first 20 bytes of the IP header, the standard header without options, and the first 20
bytes of the TCP header if present. Removing the mutable fields of the IP header, such as the flags,
fragment offset and checksum, the 20 bytes are reduced to 16 bytes. Routers can modify the IP
flags and fragment offset, which changes the checksum and requires excluding these fields. This
approach allows for 12 bytes (TCP) or 24 bytes (UDP) of application layer data to be incorporated
into the digest, which improves the quality of the digest as later discussed in Section 4.3.1. To
comply with the later implementations, instead of using a cryptographic MAC, as in the RPS
paper, a CRC32 is used as a hash function to create the digest from the 48 bytes in this work due to
the limitations in the programmable data planes. More details are discussed later (Section 4.3.1).

2.6.2 Buffer management

The buffer is implemented as a linked list, with each node containing a receipt and an indicator if
the receipt is a disclosure. By inserting the direct disclosures in the buffer and setting the indicator,
late disclosures can be detected without ambiguity compared to techniques introduced later. As
these disclosures consume buffer space, the overall buffer size is dynamically adapted based on
the number of disclosures in the buffer. Although a linked list is used, the memory requirements
will solely mention the number of 12 bytes receipts and thus not the overhead of 8 bytes per node
needed to keep track of the next node. The abstract data type of a linked list was chosen due to
receipt deletions that can happen at arbitrary positions. A static buffer array would lead to empty
spots and require additional tracking.

2.6.3 Expected performance

The RPS paper implemented RPS on an x86 architecture using an Intel® Xeon E5-2680 processor
and a 10 Gbit/s Network Interface Card, achieving a forwarding capacity of 14.14 Mpps with an
average extra processing time per packet of 1.35 us [4]. Our implementation reaches around 1
Mpps, however, the performance is not directly comparable for three reasons: (1) as introduced,
our implementation is not optimised and its only optimization is the compilation with -O3, (2)
our implementation relies on reading PCAP [16] files instead of reading the raw packet data from
a highly optimised Data Plane Development Kit (DPDK) [17] buffers and, (3) the CRC32 is purely
computed in software [18], not leveraging hardware support, whilst the RPS paper uses specialised
AES-NI [19] instructions available in the used processor.

Chapter 3

Programmable Data Planes

Programmable data planes removed long, inflexible and costly processes to create custom
Application-Specific Integrated Circuits (ASICs) by providing a Protocol Independent Switching
Architecture (PISA) that supports a programming language called P4 to modify headers. Devices
supporting P4 allow software-defined data planes and operators to test and implement new
protocols within hours. Additionally, these devices can process packets within hundreds of
nanoseconds while maintaining line rate. However, P4 has limitations such as not having freely
addressable memory and no unbounded loops as one is used to from high-level programming
languages such as Python.

3.1 PISA

As network switches are based on highly specialised ASICs, architectures may vastly differ
between vendors and products. To allow for efficient code deployment, a shared abstract model of
the hardware is required. Models are tailored to specific needs, and thus, a wide range exists. One
is the Protocol Independent Switching Architecture (PISA), which is commonly used. It consists
of a programmable parser, which is followed by a match-action pipeline and terminates with the
programmable deparser [20].

Parser and Deparser To process an incoming packet, programmers need to know the structure
of the information contained in it. Hence, PISA contains a parser which extracts headers and
separates them from the payload and a deparser which combines the dissected packet before
sending it. As both the parser and deparser are programmable, the dissection of an incoming
packet and the re-combination are customisable in software. In the example use case of processing
TCP packets, one would extract the Ethernet, IP and TCP headers.

Match-Action Pipeline The match-action pipeline is the core of the packet processing, where the
operations on the packet headers are defined. Program-defined parts of the headers are passed
to the logic units called match-action units, containing match-action tables (MAT), which result
in the modification of the headers, by matching data to functions that execute instructions to
modify metadata or headers. These Look Up Tables (LUT) allow for efficient and fast packet
processing. Although a wide range of operations can be represented, the pipeline abstraction
requires programs to be representable as a Directed Acyclic Graph (DAG). In many models, the
Match-Action pipeline is split into an Ingress pipeline, which treats packets after receiving them

17

3.2. THE P4 LANGUAGE 18

but before the port assignment decision (and respective queuing) and an Egress pipeline, which
treats the packets after the port assignment and queuing [21].

Control plane and Data plane Until now, we have seen components that belong to the data
plane. More precisely, the dataplane is in charge of forwarding the packets and applying the
defined operations, such as reducing the IP TTL. In contrast, the control plane is in charge of
defining how the traffic is forwarded. As explained in the example of a link-layer switch, the
control plane defines which destination address matches which switch port, whilst the data plane
is responsible for resolving the destination port and sending the packet over this port.

3.2 The P4 Language

So far, we have specified an abstract architecture of the programmable switches, and we now move
on to the programming language used to orchestrate and populate the parsers and match-action
pipeline. Programming Protocol-independent Packet Processors (P4) [5] is a commonly used
high-level language for programming PISA data planes [20]. It is a domain specific language
consisting of less than 40 keywords [22], and provides a concise abstraction of the programmable
switching architecture independent of the underlying hardware. P4 Code is compiled into
hardware-specific representations that are understood by the target switching device. Compared
to a general-purpose programming language such as C, P4 does not offer unbounded loops due
to the acyclic representation and strict time budgets. Furthermore, no allocatable memory and
pointers exist as the state is generally only kept as packet metadata, carried from the parser until
it reaches the deparser. As rate limiting or packet counting requires more than a per-packet state,
P4 offers externs, which can hold limited information. Information such as routing tables written
by the control plane is stored in the switch’s Ternary Content-Addressable Memory (TCAM) or
Static Random-Access Memory (SRAM).

P4 targets To run P4 code on a device, it must support the PISA and ship a compiler that
transforms a program into a hardware-specific representation. As the hardware design choices
influence the P4 programs, target manufacturers provide the abstractions as P4 code in so-called
models. Two notable targets used in this work are the BMv2 and the Intel® Tofino™.

BMv2 The Behavioral Model version 2 (BMv2) [23] is the reference software switch for P4, and it
is designed for testing purposes. Written in C++ for quick modifications and debugging,
it runs on many platforms and does not require specialised hardware. However, it is not
designed for production environments and can only reach up to 1 Gbit/s in throughput with
all logging facilities disabled. The hardware abstraction is the Simple Switch built on top of
the v1model.

Tofino Intel’s Tofino Native Architecture (TNA), which is available on their Tofino switching
ASICs [24], is a hardware solution used in industry applications. Released in 2016 (Tofino™)
and revised in a second version in 2018 (Tofino™ 2), the latest revision supports up to 32
ports at 400 Gbit/s, leading to a throughput of up to 12.8 Tbit/s and a frame processing rate
of 6 Bpps. Programmers can populate 20 stages in the ingress and egress pipeline, and the
ASIC has a packet buffer of 64 MB [25]. Installed in a switch, an added latency below 400
ns for a 64 port switch with a throughput of 6.4 Tb/s [26] can be expected. It provides a
large set of accessible intrinsic metadata and external functions such as customisable CRC
checksum functions [20].

3.2. THE P4 LANGUAGE 19

Edgecore Networks WEDGE100BF-32Q This work uses a Edgecore Networks WEDGE100BF-
32Q as a hardware testing platform. It is a 32 QSFP port programmable network switch with a port
speed of up to 100 Gbit/s built around the Intel® Tofino™ ASIC with 2 individually programmable
pipelines each with 12 stages (Figure 3.1). It offers a throughput of up to 3.2 Tbit/s, 22 MB of
packet memory and a peak frame processing rate of 4.8 Bpps [27]. The ASIC is collocated with a
Bare Metal Controller (BMC) consisting of an Intel Pentium D-1517 4 core processor clocked at 1.6
GHz with 8 GB of DDR4 RAM and 128 GB M.2 SSD. The Tofino™ is integrated into the processor’s
root complex over a PCIe Gen2 x4 bus. Additionally, two Intel X552 10 Gbit/s network interfaces
connect the BMC to the ASIC.

st
ag

e
1

st
ag

e
12

st
ag

e
1

st
ag

e
12

Traffic
Manager

&

Packet
Replication

Engine

Pa
ck

et
 In

gr
es

s

Pa
ck

et
 E

gr
es

s

Ingress Pipeline Egress Pipeline

Ingress
Parser

Ingress
Deparser

Egress
Parser

Egress
Deparser

Pipeline 1

Figure 3.1: Structure of the TNA. In addition to the introduced PISA, the Ingress pipeline has a
deparser and the Egress pipeline has a parser. Pipeline 2 is identical to pipeline 1.

3.2.1 P4 Features

As the PISA and P4 enforce constraints on the available programming features and thus limit the
expressible algorithms, two key differences to a general-purpose architecture relevant to this work
are highlighted. These are the storage and traffic manipulation primitives.

3.2.2 Storage

As mentioned before, P4 does not directly offer memory to store data. However, there are different
storage primitives available, such as tables, registers, counters and meters. The tables are supported
natively by P4 whilst all other primitives are implemented as externs. Aside from the efficient
tables, the register is the most powerful storage primitive (Table 3.1).

Feature Type Data Plane Control Plane
Table native read read & write
Register extern read & write read & write
Counter extern write1 read & write2

Meter extern read 3 read4 & write5

Table 3.1: Overview of the different storage primitives available in P4.

1The value can be incremented using count().
2Often, only clearing is allowed as a write operation.

3.2. THE P4 LANGUAGE 20

Table The tables build the foundation of P4 and are the core abstract datatype for the control
plane to dynamically change the effects of the data plane. This storage primitive is the implemen-
tation of the previously presented MATs. The lookup key can consist of multiple fields/variables
and resolves to a pre-defined set of actions. As shown in Listing 3.1, each key has a distinct match
type: The source address is matched using the longest prefix match (lpm), allowing to match to
the most specific IP address present in the table, the header length field is matched using a ternary
match, in which a bitmask can be used to define bits to be ignored. The IP version is matched
using an exact match type, meaning that the value to be looked up has to agree exactly. Finally,
the TTL is matched within a defined range as the range match type is used.

Tables can only be modified by the control plane. The data plane is optimised for finding table
entries and executing the associated actions.

1 t a b l e example table {
2 key = {
3 hdr . ipv4 . srcAddr : lpm ;
4 hdr . ipv4 . i h l : t e rnary ;
5 hdr . ipv4 . vers ion : exac t ;
6 hdr . ipv4 . t t l : range ;
7 }
8 a c t i o n s = {
9 s e t d e s t i n a t i o n p o r t ;

10 drop ;
11 }
12 s i z e = 2 5 6 ;
13 const d e f a u l t a c t i o n = drop ;
14 }

Listing 3.1: Example of a P4 table.

Register Registers are an extern functionality that offers limited storage that can be accessed
from the data plane as well as from the control plane. All metadata and packet data collected
during a packet’s live time in the data plane is lost after the packet processing, due to the data
plane being stateless. However, some applications need persistent states, such as tracking the time
between two requests. In these cases, the data plane can determine an index in a register array
and write a timestamp to this register field. When a new request comes in, the index can be again
determined, and the previously stored value can be read out and processed.

Counter Counters are a further extern specifically designed to count packets or bytes for the
control plane in the data plane. They are also allocated in an array and the data plane increments
the counter at a given index by calling the count function. Furthermore, counters can also be
directly associated with tables, using the table’s index as a counter index. This can be used to
count how many times an action was executed.

Meter Meters allow the measurement of rates using a standardized tracking mechanism [28],
resulting in one of the three colours: red, yellow, and green. Depending on the arrival rate and the
operator’s configuration, a packet is coloured, and the colour is made available to the data plane.

3The meter state is returned, and the meter is automatically updated.
4Cannot read the bucket states; only the parameters are available.
5Only parameters can be set.

3.2. THE P4 LANGUAGE 21

This feature is intended for traffic shaping, such as rate regulation of packet streams. Similarly, to
counters, meters are indexed or associated to a table as direct meters.

3.2.3 Traffic manipulation

In addition to processing packets passing through P4 devices, multiple options to modify the
traffic exist, such as recirculating, mirroring or sending packets or metadata to the controller.

Recirculation If complex operations on a packet need to be executed that cannot fit into the time
or resource budget, such as encrypting packets in the data plane [29], the packet needs to be sent
from the egress to the ingress again for an additional of processing, retaining all changes made to
the packet. Furthermore, operations such as multicast might require the recirculation of a packet
to be sent to different destinations. Hence, packet recirculation is an important feature.

Mirroring Packet mirroring slightly differs from recirculation, as the packet is copied as it was
received, and the duplicate is then processed individually, compared to the recirculation, which
keeps the changes to the packet. Mirroring allows packets to be duplicated and sent to a different
location for additional processing.

Digests The digest feature in P4 is designed to share small amounts of data with the controller.
One use for this feature is the MAC learning during the Address Resolution Protocol (ARP) [30],
where the switch learns of the neighbours and needs the control plane to populate the tables with
the learned data to allow packet forwarding.

Chapter 4

Implementation

This chapter introduces the implementation decisions and challenges faced while adapting the
RPS Algorithm to P4 and the Tofino Native Architecture. Due to the restrictive memory primitives,
we adapted the algorithm to only remove the oldest receipt from the buffer instead of receipts at
arbitrary positions.

After defining the design goals, various implementations are presented. Firstly, sampling with
a close relationship to the controller is introduced, followed by implementations that use the data
plane memory to buffer receipts. Lastly, the adaptations needed for the Tofino™ are introduced.

4.1 Implementation Goals

We must fix the implementation goals to design a P4 implementation of the RPS Algorithm. This
is especially important since the RPS is not yet standardised and only exists as an academic
publication. Hence, we first define our goals and then mention the non-goals.

4.1.1 Goals

To provide a real-world implementation of RPS on network switches, we want it to be compatible
with the reference from the RPS paper as well, and it should be runnable on an Intel® Tofino™

ASIC.

Accuracy The first and most important goal is the compatibility of the P4 implementation to the
RPS Algorithm provided in the RPS paper, and thus providing an identical accuracy. Concretely,
the designed algorithm needs to be able to run in a network of RPS nodes independently of the
implementation. Hence, the designed algorithm shall produce comparable disclosures as the RPS
Algorithm under the identical base configuration.

Sampling in the dataplane To create an application that scales with traffic rates in the order of
hundreds of gigabits, we want to minimise the bandwidth usage between the data plane and the
control plane. Hence, we set the goal to push the complexity of the RPS Algorithm into the data
plane as much as possible.

No additional hardware To incentivize ISPs to deploy RPS, they cannot be expected to spend
thousands of dollars to buy new hardware just to run the proposed implementation. Hence, the

22

4.2. RPS ON THE CONTROLLER 23

design should avoid using additional hardware that is not packed with a P4-enabled switching
ASIC.

Deployable implementation In addition to the goal of not requiring additional hardware, we
also want our proposed design to be deployable on a Tofino™ ASIC. This does not mean that
the evaluated implementations are production-ready, but that they are at least runnable on the
mentioned target architecture instead of a generic P4 implementation for BMv2. This goal is
mainly based on our challenges while migrating our reference implementations from the Simple
Switch target to the Tofino Native architecture. The provided implementation shall serve as a
feasible base implementation for experienced P4 developers.

4.1.2 Non-Goals

As RPS is a broad topic, we want to focus on providing a P4 implementation and not on the
algorithm’s behaviour and accuracy. This also includes omitting the entire receipt aggregation
framework needed to collect the receipts from various ISPs.

Analyzing RPS Although an analysis of the RPS Algorithm outside of the initial RPS paper
publication would be interesting, we explicitly avoid this. This is due to the goal of providing
an implementation compatible with the RPS Algorithm in the RPS paper. Furthermore, to our
knowledge, the RPS Algorithm is not yet used in production and is also not standardised; thus,
not all edge cases are covered.

Full RPS infrastructure RPS is more than just the RPS Algorithm: there is also the aspect of
collecting the initial metadata as well as aggregating and evaluating all disclosed receipts in
the monitor as seen in Section 2.3. To focus on the actual implementation, we assume that a
framework is in place to collect and evaluate the created receipts and ensure that the loss of
receipts can be accounted for correctly. Additionally, we assume the monitor to be capable of
determine the required traffic metrics based on the collected receipts.

4.2 RPS on the Controller

Although we have set the design goal to push as much of the RPS Algorithm into the data plane,
a simple option is to send the first 48 non-mutable bytes, which are used to create the digest, to
the controller. This approach has the advantage that the buffering behaviour is identical to the
reference implementation from the RPS paper. A second approach is the creation of the receipt in
the data plane and then forwarding it to the controller, reducing the number of bytes per incoming
packet that must be sent to the controller from 50 to 12.

4.2.1 Header mirroring

A simple implementation is to clone the incoming headers and then forward them to the controller
over the network interfaces connecting the ASIC with the host system. The advantage of this
approach is the simplicity, whilst the disadvantages are the limited performance and the violation
of the design goal of running the algorithm in the data plane.

4.2. RPS ON THE CONTROLLER 24

Implementation Switch Every incoming packet is cloned during the ingress processing and
then forwarded to the host. To save some bandwidth, the Ethernet header, as well as the first
non-mutable 48 bytes of the following headers, are sent to the control plane as shown in Figure 4.1.
The resulting Ethernet II frame has a size of 68 bytes due to the 14 bytes long MAC header, the 2
bytes for the timestamp of the packet arrival and the first 48 non-mutable bytes. The last 4 bytes
are used for the Frame Check Sequence (FCS). To save bandwidth, the source MAC field is used
to transmit the 6 bytes long flowid. As two NICs exist in the host system of the Wedge 100BF-32Q,
load balancing is performed.

08 C8 EB 6F F4 EE

Destination MAC Address
A8 2B B3 E3 18 64

Source MAC Address
12 31

EtherType

Ethernet Header
14 bytes

Header bytes

IPv4 Header

L3 Header
min 20 bytes

UDP / TCP Header

L4 Header
8 or min 20 bytes

Data

L5 Header
min 0 bytes

Data bytesHeader bytes

08 C8 EB 6F F4 EE

Destination MAC Address
A8 2B B3 E3 18 64

Flowid of the packet
12 31

EtherType

Ethernet Header
14 bytes

12 31

Timestamp Const IPv4 Header
16 header bytes

UDP / TCP Header

bytes used as the base for the digest calculation
48 bytes

8+ header bytes 0 - 24 data bytes

Data

Receipt ts
2 bytes

Figure 4.1: Overview of the header fields to extract to build the packet sent to the control plane.

Implementation Host The packets are received and processed on the host side with the reference
implementation of the RPS Algorithm. The host listens to the interfaces connected to the Tofino™

ASIC and extracts the incoming packets. After constructing the 12 bytes long receipt is inserted
into the buffer based on the rules set in the reference RPS Algorithm.

Performance estimation Based on the two available 10 Gbit/s NIC on the Wedge 100BF-32Q
and assuming full utilization of these, at a peak rate of 36.764 Mpps can be handled. The number
of processable packets is based on the total interface rate of 20 Gbit/s and the packet size of 68
bytes sent to the host for processing. Assuming an average packet size of 800 bytes, around 235
Gbit/s of traffic could be handled. However, it is highly unrealistic to achieve this due to the 100%
load of the two NIC. Utilizing the results of the RPS paper, with an achieved performance of 14.14
Mpps per 10 Gbit/s NIC, a sampling performance of 28.28 Mpps or equivalently 180 Gbit/s is
realistic.

Tradeoffs Whilst this approach is not bound by the memory limitations of the Tofino™ itself, the
main limitation is the bandwidth between the Tofino™ ASIC and the host system. If we discard
the goal of no additional hardware, the switch’s multiple 100 Gbit/s ports can send the base
packets to a dedicated server with corresponding NICs. However, every cloned packet reduces
the Tofino™’s peak rate of 4.8 Bpps [25], and cloning every packet reduces the peak forwarding
capacity by a factor of two. Furthermore, are all packets of size near the minimal Ethernet II size,
which might complicate the high utilization of high-speed NICs optimized for transmitting large
frame sizes such as jumbo frames.

4.2.2 Digest mode

Whilst the previous attempt sent 64 bytes to the controller that is reduced to a 12 bytes large
receipt, this approach reduces the overhead by creating the receipt in the data plane. It uses the
P4 digest feature to transmit the receipts in batches to the host.

4.3. RPS ON THE SIMPLE SWITCH 25

Implementation Switch In contrast to the mirroring over the NIC connected to the host system,
this implementation calculates the flowid, digest and timestamp directly in the data plane and only
forwards the 12 bytes large receipt to the host CPU. On the Tofino™ ASIC, the Learning Filter
feature is used, which allows the creating of 48 bytes large messages called Learning Quantas (LQ).
Up to 2048 unique LQ are stored in a buffer either periodically or upon being full, transferred
per Direct Memory Access (DMA) to the host system. This effectively reduces the transmitted
bytes per receipt from 68 to 12 when compared against the mirroring approach, excluding possible
annotations used internally for the DMA transfer. As the Tofino™ cannot compute SHA256 hashes
or CBC MACs, the CRC32 checksum is used for the digest creation, which will be discussed in
Section 4.3.1 in detail.

Implementation Host As the receipts are transferred over DMA, the host can directly insert the
receipts into the buffer and thus run the RPS Algorithm without creating a new receipt from the
raw bytes. This reduces the computational effort and the number of bytes to be processed.

Performance estimation Based on the PCIe Gen 2 x4 connection between the Tofino™ ASIC and
the host system of the Wedge 100BF-32Q, a peak rate of 166.667 Mpps can be handled under the
assumption of a fully utilized connection. The number of processable packets is based on the
PCIe 2 x4 link that provides 5 GT/s with an 8b10b encoding, leading to a usable bandwidth of
16 Gbit/s and the receipt size bytes that is sent to the host for processing. Assuming an average
packet size of 800 bytes, around 1 Tbit/s of traffic could be theoretically handled. However, such
a high utilization of the PCIe interface seems unreasonable, as the entire control of the Tofino™

ASIC is performed over this interface. Furthermore, the system with 8 GB of RAM and a 4 core
Intel Pentium D-1517 clocked at 1.6 GHz base-frequency might become unstable or is unable to
handle 4 GB/s of receipt data. Assuming a 85% utilization, 141 Mpps could be processed, resulting
in a traffic rate of around 902 Gbit/s at an average packet size of 800 bytes.

Tradeoffs Similar to the approach using the mirroring of the headers, this approach is not
bounded by the limited Tofino™ memory. However, the complexity of the algorithm is pushed into
the control plane, which contradicts the goal of running the RPS Algorithm as much as possible
in the data plane. Furthermore, the high utilization of the PCIe interface might negatively impact
other ISP services running on the switch that need to communicate with the Tofino™.

4.2.3 Interim conclusion about RPS on the controller

So far, two designs have been presented, which both avoid the challenges caused by the limited
storage capacity of the Tofino™ ASIC by pushing the complexity of the storage to the host system.
Whilst these designs should allow for traffic rates of over 100 Gbit/s, they do not follow the goal of
pushing as much complexity as possible into the data plane, as they occur a bandwidth overhead.
Nevertheless, mirroring reduces the bandwidth between the data plane and the sampler by 12.5x,
assuming an average packet size of 800 bytes. The packet rate remains constant. Ignoring DMA
overheads, the reduction is 66.6x for the digest implementation.

4.3 RPS on the Simple Switch

To bring the RPS Algorithm onto the Wedge 100BF-32Q, we use the intermediate step to implement
a version for the Simple Switch target that runs with the BMv2. This intermediate step allows us to

4.3. RPS ON THE SIMPLE SWITCH 26

resolve the challenges of the loop within the RPS Algorithm and the lack of directly addressable
memory. Furthermore, we present a workaround for the hash functions, as cryptographical hash
functions are generally unavailable in P4.

4.3.1 From SHA256 to CRC32

Whilst the authors of the RPS paper used a Message Authentication Code that is based on the AES
block cypher as they had a CPU with hardware support for this operations [4], it is clear that this
is not possible in a generic P4 setting. Hence, we evaluate the Cyclic Redundancy Check (CRC32)
checksum algorithm as a substitute and show the faced tradeoffs. As the hash function selects
candidates to disclose, the CRC32 must produce a closely related distribution of hashes. We find
that the CRC32 produces a similar distribution and thus can be used as a replacement, whilst the
cryptographical properties of a CMAC or HMAC are lost.

CRC32 The CRC32 is a CRC that produces a 32 bit-wide result by performing a polynomial
division on the input data. The application can define the 33 bit large polynomial; nevertheless,
some polynomials are standardized. One example of this standardization is the ISO 3309 CRC-32,
used as the Frame check sequence in the Ethernet protocol standardized as 802.3. As every NIC
uses this CRC, specialized hardware is available to perform these calculations efficiently.

Difference between MAC and CRC Although both, CRC and MAC aim to detect modifications
of the provided data, they fundamentally differ from a security perspective. CRC is designed to
ensure data integrity during transmission without the assumption of an active attacker, whilst
MAC aim to prevent the modification by an attacker by providing integrity and authentication.
Although CRC32 is technically a checksum, we refer to it as a hash function or hash algorithm in
this work.

Impact on the RPS Algorithm The main motivation of the RPS paper to use a MAC was the
availability of hardware acceleration and the randomization properties of these cryptographical
building blocks. When using the CRC32 algorithm, the cryptographical properties are lost.
However, we leave the analysis of this impact to future work. Nevertheless, we can conclude that
the reversing of the CRC32 is possible [31] and thus allows for attacks on the RPS Algorithm.
Neglecting the security aspect, we only require the 4 bytes of the MAC to provide a similar
distribution of the digest as CRC32 would produce.

Uniformity of the hashes based on real data To understand if the different methods of digest
generation result in a uniform distribution, we analyze a CAIDA trace by generating the digests
and plotting their distribution. However, the distribution is not uniform; SHA256 and CRC32
produce similar anomalies.

With 32 bit large digests, 4.3 billion different hashes are possible. To understand the uniform
distribution of the hashes, the number of entries in a total of 100′001 bins is compared to the
number of entries of the given bucket for a trace with 35 million packets. As a data source,
the equinix-nyc.dirA.20190117-130000.UTC.anon CAIDA [13] trace is used as it reflects a realistic
scenario of packet headers encountered by a switch. If the hash functions are perfectly uniform,
every bucket is expected to have 350 entries and thus a constant horizontal line for both hash
functions. However, the distribution contains multiple spikes for both SHA256 and CRC32.
These spikes occur similarly for both hash functions, so the underlying data must be considered

4.3. RPS ON THE SIMPLE SWITCH 27

(Figure 4.2b). The basis for the hashes are the first 48 non-mutable bytes from the IP header
upwards. However, the CAIDA traces only provide the Internet and Transport Layer headers,
which leads in the case of UDP to 20 bytes of zeroed data. Hence, the application layer’s data
would be considered, leading to a better distribution. To sum it up, the large collision spikes
under both hash functions are an artefact of repeating data rather than issues with the function
itself. The effects are significantly reduced if application layer traffic is used, with the number of
entries falling within a range of ±75 entries, compared to the previous spikes in the thousand of
entires (Figure 4.2b).

0 20000 40000 60000 80000 100000
Hash buckets with size 42949 in natural order

0

2000

4000

6000

8000

10000
Number of entries in bucket

Digest function
CRC32
SHA256 4B

(a) Without application layer data

0 20000 40000 60000 80000 100000
Hash buckets with size 42949 in natural order

200

250

300

350

400

Number of entries in bucket

Digest function
SHA256 4B
CRC32

(b) With application layer data

Figure 4.2: Distribution of the 4 bytes long digests from the CAIDA [13] trace. The x-axis indicates
the bucket number, whilst the y-axis indicates the number of entries per bucket. The colours
indicate the used hash function. As spikes in the distribution exist, the distribution is not perfectly
uniform.

Distribution similarity Whilst both hash functions produce similar anomalies, it remains to
check if both produce a comparable distribution of hashes. As the RPS Algorithm relies on the
hash distribution for sampling, CRC32 should match as closely as possible the SHA256. When
evaluating the distributions based on CAIDA data, it is found that CRC32’s distribution matches
closely to SHA256’s distribution. The empirical cumulative distribution function (ECDF) is plotted
to compare the distributions of the two hash functions in Figure 4.3. As both curves overlap and
cannot be distinguished by eye, the distribution can be labelled similarly.

4.3. RPS ON THE SIMPLE SWITCH 28

300 320 340 360 380 400 420 440
Number of entries per bucket

0%

20%

40%

60%

80%

100% CDF of 35,232,064 digests collected in 100,001 buckets
Digest function

CRC32
SHA2 4B

Figure 4.3: ECDF of SHA256 and CRC32 based on the CAIDA trace equinix-nyc.dirA.20190117-
130000.UTC.anon containing 35 million packets, hashed into 100′001 buckets.

4.3.2 Buffer access in P4

A core component of the RPS Algorithm is the deletion of all receipts of a given flow as soon as
a candidate is picked as a direct disclosure. As P4 does not allow for dynamic loops and does
not offer freely addressable memory, a different approach than a generic linked list is required.
Addressing this challenge, we adapt the RPS Algorithm by ’inverting’ it. Instead of removing
receipts upon determining a direct disclosure, we remove the receipts and determine delayed
disclosures upon the arrival of new receipts. This approach allows for a high degree of decoupling
between the data plane and the control plane whilst maintaining the sampling properties.

Storing receipts in the data plane In order to store receipts in the data plane, there is only
a single option: registers. The register extern is the only extern that allows writes and reads
directly from the data plane as introduced in Section 3.2. Hence, a register array stores the receipts
as a whole or as individual fields. As there are no viable alternatives, the register array in the data
plane is from now on referenced as buffer and the register index referred to as buffer index.

Removing the loop dependency To migrate the RPS Algorithm from general purpose language
such as C or C++ to P4, which does not offer unbounded loops, an alternative approach to
removing all packets from a flow upon a direct disclosure has to be found. But why does P4
not offer unbounded loops? As introduced in Section 3.2, resource and time constraints make
unbounded loops nearly impossible, especially when processing at line rate. Furthermore, their
number of stackable headers is often bounded when dealing with network packet headers, or not
all header fields need to be parsed. Other frameworks, such as Flare [32] that also offer payload
processing, do not have these restrictions but suffer from other limitations.

Looking at the RPS Algorithm, we find that the number of receipts to remove from the buffer
can range from 0 to thousands of receipts, given that δ is usually in the range of 10−5 which
makes a static unrolling impossible on the PISA. Hence, a P4 implementation of RPS should
change the structure of the RPS Algorithm such that the dependency in the data plane from one
incoming packet to looking directly at n packets is changed into a 1:1 mapping: one incoming
packet triggers the modification of a single1 buffer entry.

1This constraint could be weakened by allowing a 1:x mapping with x ∈ [1,≈ 10], however, the Tofino™ architecture
introduced later will impose strict bounds on x.

4.3. RPS ON THE SIMPLE SWITCH 29

4.3.3 Naive implementation

To understand the limitations in P4, we start with a naive implementation closely matching the
reference RPS Algorithm. This approach solves the challenge of implementing the RPS Algorithm
without loops with a list of actions to be taken upon receiving a new receipt.

To remove the need for looping over the buffer in the data plane, the naive approach pushes
this complexity into the control plane such that the data plane can directly determine the buffer
index at which a new receipt is to be stored. Abstracted, the controller provides instructions from
the control plane as a list of the following entries and actions to be taken on the data residing at
this entry. The data plane becomes a queue consumer, and the controller manages the queue as a
producer by adding entries - if needed at arbitrary positions.

To dive deeper, we first start by looking at the controller’s duties and the look at the data
plane’s actions. The entire control flow is shown in Figure 4.4.

 Controlplane

 Dataplane

Incoming
packet

Outgoing
packet

Outgoing
disclosure

Receipt
creation

global id
assignment

Look-up table:
global id -->
buffer slot,
action

Store
receipt in
buffer

Do nothing

Check for
disclosure

flowid,
global id,
disclose?

 Table entry: global id --> next buffer slot, action

Store flowid
and global id
in tracker

Determine
actions

If disclosure: Add table entry to
disclose for every receipt in buffer

If not a disclosure: Check if enough
buffer capacity is available, else add

an overwrite table entry

FIFO Buffer

tracker:
flowid --> [global id(s)]

Figure 4.4: Control flow of a naive implementation of the RPS Algorithm in P4. The control plane
manages the buffer, and the data plane adds and removes entries from the buffer. Removed receipt
entries can be checked for delayed disclosure or dropped. A global identifier in the form of an
incrementing counter is used such that the data plane can find a corresponding action.

The controller maintains the information of the incoming receipt order as well as the mapping
of flowids to the buffer indices. It receives the flowid, a global identifier for every incoming
packet, and the information if this referenced packet’s receipt is a direct disclosure. Based on
this information, the controller determines which buffer index will be used next and what action
will be taken with the data residing at this entry. If a direct disclosure triggers the eviction of all
receipts of the flow, the controller will add the buffer indices at the front of the task queue with
the additional information that every receipt, before it is overwritten, should be checked for a
delayed disclosure. Figuratively speaking, instead of unallocated memory, memory no longer
needed is re-used. Every newly incoming packet removes an ’old’ entry, and its content might be
checked for delayed disclosure.

Before we move to the data plane, the yet unexplained global identifier has to be discussed.
As there is no abstract data type such as a queue in P4, a counter, which is incremented upon
creating a receipt, is used as the data plane’s pointer to the next task to work on in the queue
filled by the controller.

The data plane is straightforward. A receipt for an incoming packet is also generated, and the
global identifier is retrieved. The information about the current receipt is passed to the controller,

4.3. RPS ON THE SIMPLE SWITCH 30

and the buffer index is retrieved by using the global identifier as a look-up key in the task table,
which serves as the controller’s queue. The entry is overwritten based on the registered action, or
a check for a delayed disclosure is performed.

Shortcomings of the Naive approach Although this simple approach might seem well suited,
there are a few drawbacks to it, with the main one being the high reliability of the controller. For
this approach to work, the following factors need to be taken into consideration:

Information
flow

The controller runs the reference RPS Algorithm, except it stores the buffer index, which is
in C-terms just a pointer to the allocated receipt in the data plane, instead of the timestamps
and digests. Therefore, the global identifier, the flowid and the disclosure status, must be sent
to the controller for every generated receipt. With a x bytes wide flowid, x

x+6 of a receipt
are sent to the controller every time. With a 6 bytes wide flowid, this ratio is 50%, begging
the question of why not just sending the entire receipt to the controller as introduced in
Section 4.2.1.

Low delay As the controller is in charge of populating the task queue of the data plane, the unique
identifier should ideally not move during the controller’s processing, as the controller might
already replace the next task that should be performed. An example of this is if the case of a
full buffer and the incoming receipt rx causing a direct disclosure for flowid fx: We would
expect the buffer to have the capacity for the following receipts ry as all receipts of fx are on
the list to be removed and this ’free’. However, if the delay between the rx and ry is smaller
than the time it takes for rx’s information to be sent to the controller, being processed and
(re)writing the table entries to the data plane, the data plane’s global identifier will have
moved on. It drops the oldest receipts in the buffer based on the table entries. Even if this is
considered and some drops due to the delay are allowed, the controller still needs to predict
the next global identifier, which is meaningful to replace.

Table
updates

As a direct disclosure alters the task queue, many table entries might be modified, as the
queue is implemented as a table with the global identifier as the key. Inserting n receipts to
be removed means either reducing the global identifier x in the data plane by n and inserting
the receipt tasks at the indices idx ∈ [x− n, x] in the table without touching the later tasks or
by shifting all existing tasks in the table by n. As, in reality, updates are not directly visible;
the controller has to anticipate how far the global identifier has moved and needs to perform
the needed compensation. Furthermore, research indicates that the Tofino™ peaks at 100K
table modifications per second [33], setting a hard limit on the scalability of this approach.

Looking at these three points and referencing them with our design goals, we find that we violated
the goal of pushing as much complexity as possible into the data plane due to the heavy reliance
on the control plane to update the task list. Furthermore, we found that the naive implementation
is sensitive to delays and requires table entries to be written within a tight time limit. Furthermore,
P4 devices are generally not designed to perform real-time, with minimal latency in the order of
microseconds, updates [34].

4.3.4 Inverting the RPS Algorithm

Until now, the control plane was heavily involved in the P4 implementation of RPS; however, in the
design goals, we stated that we want to provide an implementation with minimal dependencies
on the control plane to reduce the bandwidth overhead. The tight coupling was caused by the

4.3. RPS ON THE SIMPLE SWITCH 31

control plane’s task to track the mapping of flowids to buffer indices, and it can only be broken if
the data plane performs its buffer management. Hence, we present a FIFO buffer approach that
replaces the buffer with the ability to perform arbitrary modifications as a tradeoff to the ability
to perform more operations in the data plane.

The FIFO algorithm In the naive implementation, the control plane managed the flowid to buffer
index mapping, which was not feasible to do in the data plane due to the unbounded number of
receipts per flow. The FIFO implementation circumvents this by ignoring the positions of packets
and only looks at the oldest entry in the buffer when replacing an entry. Hence, instead of firstly
processing all packets affected by a direct disclosure, packets are removed in the order of arrival
from the buffer. The algorithm is presented as pseudo-code in Algorithm 3.

For every incoming packet, a receipt is created and based on the observation if the receipt is a
direct disclosure or not, a different path is taken:

Direct
disclosure

Firstly, the receipt is emitted to the collector identical to the RPS Algorithm and then added
to the disclosure tracker to be matched upon deleting an entry from the buffer.

Other In this case, the receipt was not a direct disclosure, and we have to replace the oldest entry,
i.e., the head of the FIFO buffer, with the current receipt. The removed entry R is then used
to check if a disclosure is present in the tracker for this flow and time range. If this is the
case, the conditions for a delayed disclosure are checked identically to the reference RPS
Algorithm; otherwise, the receipt is discarded.

This approach is an inversion of the RPS Algorithm, as instead of checking for delayed
disclosures in the receipts upon a direct disclosure, the removal of a receipt causes a lookup for a
direct disclosure to determine if the receipt is a delayed disclosure.

4.3. RPS ON THE SIMPLE SWITCH 32

Algorithm 3 Retroactive Packet Sampling Algorithm with a FIFO buffer

1: procedure RetroactiveSamplingFIFO(p : packet)
2: R′ ← Receipt(p, currentTime)
3: r ← packetRate(R′. f lowID)′

4: if DiscHash(immutable(p)) ∈ DiscRange(r) then
5: Emit receipt R′.
6: Add R′ to the disclosure tracker
7: else
8: R← swap the oldest receipt in the FIFO buffer with R′

9: D ← receipt from the disclosure tracker corresponding to R
10: if ∃D then
11: if (D.time− R.time) ≤ κ − µ then
12: continue
13: end if
14: if Hash(R.digest, D.digest) ∈ Range then
15: Emit receipt R.
16: end if
17: end if
18: if LateDisclosure(R. f lowID) then
19: Emit warning.
20: end if
21: end if
22: end procedure

Rate tracking in P4 The RPS Algorithm uses the flow’s rate to set the hash range for the
direct disclosures. In P4, this can be implemented either as a direct counter or direct meter

associated with a table that is indexed by the flowid.

Meter The meter maps the rate using a token bucket to a 2 bit value, which can be used to determine
the range based either on hard-coded values or an additional table lookup with the flowid
and meter colour.

Counter Upon matching the flowid, the counter is incremented and the stored rate is returned. The
RPS paper introduces this approach and allows for an arbitrary number of rate levels as the
new rate; thus, the corresponding rate is calculated upon receiving a new direct disclosure.
As the value is updated by the controller, a history of rates can be kept and used to smooth
out traffic bursts.

Although P4 supports meters out of the box, the implementations use the counter approach due
to the simplicity of configuration and monitoring capabilities. Additionally, the counter approach
allows replaying traces at different speeds with dedicated timestamps in the packet header.

Disclosure tracker in P4 Compared to the reference RPS Algorithm, which immediately removes
all receipts of a flow whilst determining the delayed disclosures, there can now be multiple
disclosures active at the same time int the FIFO RPS Algorithm and hence the mapping from an
evicted receipt depends not only on the flowid but also on the timestamp as displayed on a small
example in Figure 4.5. The disclosure tracker is modelled in P4 as a table, and the controller

4.3. RPS ON THE SIMPLE SWITCH 33

FIFO Algorithm Reference Algorithm

t=0
tracker

r1 r2 r3t=3 r1 r2 r3
tracker

t=4 r1 r2 r3
tracker
d1 -> [r1, r3]

r5 r6 r7 r8 r9 r10t=10 r1 r2 r3 r5 r6 r7 r8 r9 r10
tracker

d1 : [r1, r3]

t=11 r1 r2 r3 r5 r6 r7 r8 r9 r10
tracker

d1: [r1, r3]
d2: [r5, r10]

Figure 4.5: Difference in the behaviour of the FIFO RPS algorithm compared to the reference RPS
Algorithm for a single flow. A direct disclosure happens for r4 at t = 4 (orange) and r11 at t = 11
(green). r2 is a delayed disclosure with respect to d1 and r6 and r9 are delayed disclosures with
respect to d2. Whilst the reference buffer contains only receipts belonging to a single disclosure
due to the direct removal, the FIFO buffer can contain receipts belonging to multiple disclosures,
as the entries in the tracker indicate.

adds new entries; thus, lookups are efficient. Furthermore, this table also provides the digest and
timestamp of the associated direct disclosure.

There are 2 different approaches which can be used to find the associated disclosure in the
tracker, in addition to the flowid:

Time This approach uses the range match type to find the correct disclosure. A receipt rx removed
from the buffer will have a timestamp in the range [dy−1.ts, dy.ts] for an associated disclosure
dy. Due to the retroactive sampling aspect, a candidate for a delayed disclosure has to arrive
before the associated direct disclosure, and the lower bound is the previous disclosure or 0 if
none exists yet.

Number In all examples shown in this work, we number the direct disclosures with incrementing
numbers, such as d1. This numbering can also be added in the data plane as firstly, the direct
disclosure range boundary for the direct disclosure must be determined based on the flowid.
Additionally, we can return the range and the current disclosure number. Then, every receipt
stores this following disclosure number and the 12 bytes. Upon evicting the receipt from
the buffer, the number can be used as an exact key in addition to the flowid to resolve the
associated direct disclosure. This removes the need for performing range-based queries on
timestamps at the cost of an additional byte of memory.

These approaches have advantages and disadvantages, discussed later in Section 4.4.5 and
Section 5.1.3.

Detecting late disclosure in P4 As detecting late disclosure is a powerful tool when reporting
disclosures or their absence to the monitor, an implementation without a for loop to determine
the oldest receipt has to be found. To accomplish this, a similar approach as in the reference
implementation can be made: direct disclosures are added to the buffer. However, their digest’s
and timestamp’s bits are all set to 0 or 1. Combining these two features results in a low probability
of a receipt having the same values, thus allowing for good late disclosure detection. Dropping
a disclosure from the buffer results in a notification to the control plane, which will store it.

4.4. RPS ON THE INTEL® TOFINO™ 34

Although an additional table could be used to find the subsequent receipt that is present as soon a
direct disclosure occurs, it is advantageous to only point towards the subsequent delayed or direct
disclosure for two reasons. Firstly, the control plane has to be notified, and the entry has to be
written. At high flow rates, a disclosure could already have happened, thus rendering the efforts
useless. Secondly, substantial effort has to be made to remove the table entry when the oldest
receipt is found. Hence, the late disclosure warning does not directly point to the following receipt
at the time of the direct disclosure as in the RPS Algorithm and thus adds some imprecision.
Nevertheless, this is not considered a negative impact on the overall performance, as the monitor
only receives disclosures and ’missing’ receipts without disclosures do not influence the metric
verification. However, a detailed analysis of the monitor with a standardised infrastructure would
be needed to understand the detailed impact.

Tradeoffs The advantage of this approach is that the disclosure tracker can be managed by the
control plane and thus the controller only interacts upon a direct disclosure with the data plane.
However, the drawback is that packets are now removed in the order of arrival and not per flow,
which leads to a different buffering behaviour than the reference RPS Algorithm.

4.4 RPS on the Intel® Tofino™

To achieve the goal of providing a production-ready implementation, the generic P4 implementa-
tion has to be adapted for an industry-used hardware target. This section introduces the challenges
and design adaptations encountered while adapting the implementation to the Tofino™ ASIC.
The main challenges were the stage, memory limitations, and time tracking using the 2 bytes
timestamp.

4.4.1 Stages

The Tofino™ allows for 12 stages of MAUs to implement the data plane logic in both the ingress
and egress pipeline. The critical path length requires splitting the algorithm into both pipelines
and adding metadata that must be transferred through the traffic manager. As an incoming packet
triggers a buffer replacement and the egress processing depends on the queue admission, receipts
can be dropped.

The compiler is in charge of placing actions and calls to externs optimally. However, large
tables that occupy multiple stages or dependencies that enlarge the critical path pose a limit to
the optimizations. Independent of the implementation choice, the maximization of the buffer
space causes the critical path to extend to around 15 stages and thus requires the splitting into the
ingress and egress pipelines whilst the receipt is transferred as metadata.

Under a regular operation regime, there are no drawbacks to splitting the processing. However,
due to the queue manager’s traffic-shaping policies, the receipt can be lost with the associated
packet under heavy loads or congestion to specific output ports. As the receipt is taken from the
buffer and thus is independent of the incoming packet, the loss of this potential disclosure can be
caused by the internal buffer policy, which is not incorporated in the RPS design.

4.4.2 Storage

The receipt buffer, in combination with the disclosure strategy, is the key part of the RPS Algorithm.
As seen in the RPS parameter analysis (Section 2.5), memory in the order of a few Megabytes

4.4. RPS ON THE INTEL® TOFINO™ 35

is required. The Tofino™ supports up to 4 MB of receipt storage per stage and pipeline under
perfect utilization.

As seen before, the only viable solution for storing receipts is the usage of the register extern
in P4. These registers are located in the SRAM and are organized in blocks of 1K entries with
128 bits each. A MAU supports up to 48 blocks of registers, with the largest continuous register
consisting of 35 blocks. The architecture furthermore limits the sharing of the 128 bit entries and
thus allows only for 1, 8, 16, 32, 64 bit wide entries. With these restrictions and splitting a receipt
into 8 bit chunks, storage for up to 573′465 receipts (4 MB) can be achieved, with the remaining 12
blocks2 remaining usable by other applications. This block restriction leads to the fact that it is
possible to store 4 MB of 7 bytes large receipts (7 · 8 bits) and only 3.4 MB of 12 bytes receipts,
as the 12 stage limitation requires the usage of 16 bit wide registers, to remain in the order of 6
memory stages. Thus, the 286′733 16 bit registers form a bottleneck with 12 bytes ·286′733 = 3.4
MB of storage.

Recirculation Although the possibility of implementing the buffer using the recirculation feature
exists, no efforts were made towards it as the buffering and additional packet processing does not
fit the buffer scenario. The Tofino™ platforms allow for re-circulating packets, and thus, the 22
MB unified packet buffer seems at first glance a better option than storing only 4 MB of receipts.
Subtracting a minimal header or even a full Ethernet header and padding out the rest of the
minimal frame size with receipts, 20 MB or 17 MB of receipt storage could be available in the
shared packet buffer. But in the context of the 8 or 16 MB of total receipt storage, assuming all 2
or 4 parallel switch pipelines are used, the trade-offs of sharing the memory with all other packets
as well as having the overhead of administrating an equal load balancing and maintaining order,
make packet circulation not a viable approach on the Tofino™.

4.4.3 Controller communication

The data plane sends information to the controller if a direct disclosure, delayed disclosure or
late disclosure warning is detected. The direct disclosures are time-critical, as the information
for the delayed disclosure must be made ready as soon as possible, since the oldest packets are
first removed from the buffer. The implementations communicate based on a mixture of polling
registers and packet mirroring.

Tradeoffs Many usages of the Tofino™ require only interaction from the control plane to the data
plane for configuration, and registers are periodically read for the control plane to track the state
of the data plane. The data plane can use the LearningFilters to send small message digests to the
controller to trigger state updates or write entries into registers. The former approach relies on the
ASIC for the batching of the requests, while the latter requires regular polling. An alternative is
the usage of packet mirroring, which creates a copy of a packet and allows for header modification
such that the desired data is sent to the controller.

Whilst the learning filter, which is only available during the ingress processing on the Tofino™,
is the ideal abstraction for sending data to the controller, the time between packet reception and
data arrival in the controller depends on the Tofino™ ASIC. For the time-critical direct disclosures,
the digest feature was found to have a larger transmission time than transmitting a dedicated
message over ethernet. The cause for this larger delay is not directly due to the transmission

2A register requires an additional block for the access synchronization, thus requiring 36 of 48 blocks.

4.4. RPS ON THE INTEL® TOFINO™ 36

channel. With every ≈ 105-th packet being a disclosure, the internal digest buffers are not filled
fast enough, and a time latch forces the exchange based on the ASIC configuration.

The transmission over the network depends on two factors: the Tofino™ delay and the BMC
delay. The delay on the Tofino™ is the time in the traffic manager and the egress processing, while
the time on the BMC consists of receiving the packet and sending a signal to the controller. The
former is expected to happen within hundreds of nanoseconds, while the latter can be in the
order of a few microseconds [35]. The mirroring of packets reduces the overall forwarding rate,
however, the impact is comparable to other sampling schemes such as with NetFlow [36] due to
the selection of σ.

Using registers avoids dependency on the network and thus avoids potential packet loss.
Disclosures are stored in a register array read from the control plane. Accessing a register for a
read operation on the Tofino™ takes an average of 1 to 5 us based on the reporting of Intel®’s
benchmarking script. A tracking register can determine the indices in a dedicated direct disclosure
buffer to read out, allowing for batching of the requests. Whilst the previous communication
primitives don’t use SRAM, this approach uses SRAM to store the register contents.

Used primitives The provided final implementation uses a mixture of register polling and
mirroring. The direct disclosures are shared over a 4′000 entries large register array, requiring
35 KB of register memory for the optimized receipts. Mirroring is used for delayed disclosures
and late disclosure warnings that are not time-critical. With a rate of 1 Gpps and a disclosure rate
delta in the order of 10−5, about 10′000 disclosures can be expected per second. To have some
headroom, 4′000 entries are selected to allow also consistent readouts during traffic bursts.

4.4.4 Timestamps

As introduced, the reference implementation from the RPS paper uses 2 bytes to store the timestamp
at millisecond accuracy. As the Tofino™ lacks the support for general division and modulo
operations, special care with the time calculations has to be taken. This includes changing time
resolution and dedicated overflow handling.

Extracting timestamps A global timestamp with ns accuracy is generated during the ingress
parsing. To get a subsection of this timestamp in ms, a division by 1′000′000 would be required.
Although the Tofino™ provides a MathUnit extern that offers divisions, the operation can only be
added to a register, which is impractical due to calculating the timestamp for every packet. Hence,
the timestamp is reduced by shifting 20 bits, resulting in a resolution of 1′048′575 ns. Using this
scaling, the 2 bytes timestamp resolves to a maximal duration of 68 seconds.

Determining time differences With the two approaches, different time resolutions are needed.
If the timestamp is used as a key in the range key for the lookup, the complexity is pushed to the
controller to provide the correct values. In the case of the number, the data plane has to resolve
the timestamps, which is done with the aid of the control plane.

With the limited operations outside of stateful ALUs, especially the restriction of operations
involving at most 4 bytes of data and 12 bits of PHV info, the time difference cannot be directly
computed. Therefore, the controller provides the timestamp of the disclosure d, the earliest
timestamp before the disclosure tsq based on the quiet time (κ − µ) and a flag, indicating if
an overflow occurred in the computation. Using this information, the data plane determines

4.4. RPS ON THE INTEL® TOFINO™ 37

whether the timestamp of a receipt r falls into the quiet time. Hence, to perform the check
(d.ts− r.ts) ≤ (κ − µ), the P4 code as shown in Listing 4.1 is used:

1 b i t <16> g r e a t e r q = max<b i t <16>>(r e c e i p t . ts , d i s c l o s u r e . t s w i t h q u i e t t i m e) ;
2 b i t <16> smal ler d = min<b i t <16>>(r e c e i p t . ts , d i s c l o s u r e . t s) ;
3 bool above q = g r e a t e r q == r e c e i p t . t s ;
4 bool below d = smal ler d == r e c e i p t . t s ;
5

6 i f (d i s c l o s u r e . t s over f l ow) {
7 i f (above q | | below d) {
8 // do nothing
9 } e l s e {

10 d e l a y e d d i s c l o s u r e () ;
11 }
12 } e l s e {
13 i f (above q && below d) {
14 // do nothing
15 } e l s e {
16 d e l a y e d d i s c l o s u r e () ;
17 }
18 }

Listing 4.1: P4 case distinction to determine if a receipt’s timestamp falls into the quiet time.

Noteworthy is the combination of lines 1 and 3: With the P4 limitations, a ≥ b cannot be
directly computed and thus, it is checked by max(a, b) == a. The lines 13 to 17 handle the case
without overflow by checking if tsq ≤ r.ts ≤ d.ts. In the case of an overflow, d.ts < tsq and thus,
the check is split into tsq ≤ r.ts ∨ r.ts ≤ d.ts.

4.4.5 Final implementation

Whilst the usage of the time range initially seems to be a better choice than the approach with an
explicit next disclosure number (nextd), the efforts in table management and state mirroring to the
control plane lead to the decision to use an additional byte per receipt to store the per-flow next
disclosure number. This number is incremented for every collected direct disclosure such that for
2 direct disclosures di and dj, nextd(di) = nextd(dj) + 1. Hence, with the rate update of di, the next
disclosure number is also incremented, and every consecutive receipt is tagged with this number.
Removed receipts from the buffer use the flowid and (nextd) to find the corresponding direct
disclosure for the delayed disclosure. This approach, on the one hand, removes the non-trivial
time-range calculation in the disclosure table, as the (nextd) is a sequential number that can easily
be tracked. For example, upon overflowing the timestamp, two dedicated entries must be written
as the range requires low ≤ high. On the other hand, the range match-type is removed, and thus,
less table memory is used as range entries are split into multiple entries in the table.

4.4.6 Not considered

While many implementation decisions were made, some challenges were out of the scope of this
work and are thus summarized here.

Timestamps The current implementations use the global tstamp provided by the devices’ ingress de-
parser metadata. This approach was chosen due to the Tofino™’s support of the Precision
Timestamp Protocol (PTP) [37]. However, the API endpoints are only exposed in the C API,
and thus, the time synchronization was not used, and the timestamps are directly extracted
without adaptation.

4.4. RPS ON THE INTEL® TOFINO™ 38

Mirroring Depending on the switch built around the Tofino™ ASIC, packet mirroring is not always
supported over a dedicated interface to the BMC. Specific examples of this are the Wedge
100BF-32Q and Edgecore Networks WEDGE100BF-64Q. The former has the dual 10 Gbit/s
internal network connection to the BMC, while the latter only offers a dedicated 100 Gbit/s
port on the front panel. If this interface cannot be connected to the BMC, the bf-driver can be
switched to send packets over the PCIe interface. The exact configuration is left for future
implementations.

Controller The controller is a central piece of the RPS application, but only a proof of concept is provided
in Python. To accommodate all required functionalities and access to all Tofino™ features, a
C implementation should be used. Not only does this offer better feature coverage, but it
also allows for a deeper interaction with the underlying hardware.

Chapter 5

Evaluation

The proposed implementations are evaluated in the following three dimensions:

1. Hardware usage compared to an L2-forwarding reference

2. Disclosure accuracy compared to the reference RPS Algorithm using a simulator

3. Performance on the Edgecore Networks WEDGE100BF-32Q

We find that the best implementation using in-data plane buffering uses 11 of the 12 stages
as well as 45% of the Map RAM and around 30% of the overall SRAM are consumed, whilst the
remaining resource usage is within 10%. Using a simulator, we find that, the FIFO RPS Algorithm
achieves the target accuracies in most cases within the specified time, averaging around 10% less
samples than the RPS Algorithm under identical configurations. Implementations running on the
Tofino™ can support up to 2.3 Mpps at a minimal flow rate of rmin = 200 Kpps while maintaining
the target accuracy. However, results obtained on the hardware show the need for an optimised
controller, as only 1.5% of the generated digest could be received when using the digest mode.

5.1 Hardware resource usage

As AS operators should be incentivised to deploy RPS in their networks with minimal additional
effort, the resource usage of the implementation is a crucial aspect. Ideally, the number of stages
available, TCAM and SRAM, is barely reduced. We find that all implementations with an in-data
plane buffer use around 10 stages and consume up to 50% of the available SRAM per stage for
up to 8 stages (30% average over all stages), and thus block a significant portion of the available
SRAM. Furthermore, the Map RAM is intensely used (up to 50%), while most other usage metrics
fall below 10%. Implementations without an in-data plane buffer use up to 2 stages and, at most,
4% of the available resources.

5.1.1 Methodology

Environment All implementations are compiled in a virtual environment based on Ubuntu
20.04 LTS with the Intel® P4 Studio SDE 9.13.1. The compilation is initialised over Python using
p4utils [38]. The Intel® P4 compiler generates all hardware usage numbers reported, and additional
insights are obtained using Intel®’s p4Insight.

39

5.1. HARDWARE RESOURCE USAGE 40

Reference A custom-written P4 program called l2 switch is used as a reference, which consists
of a single table that performs the modification of the Ethernet header and is a fundamental
building block for all other implementations. It ensures the functionality of the switch as a
network switch, although MAC learning is not implemented, and all entries have to be pre-
configured from the control plane.

Parameters The evaluation focuses on the resource usage of the ingress and egress pipeline;
thus, the parser is not considered. The dissection into Ethernet, IP, TCP or UDP headers is a
common use-case as well as it is identical among all tested implementations. Hence, the usage
of the number of match action stages and the limited SRAM and TCAM are evaluated. A third,
Tofino™ specific, memory is the MAP RAM, which is used for stateful objects such as counters or
meters. A further metric is the usage of the Match Crossbar, which is responsible for providing
the search keys and the action selection; a high use limits other applications from performing
table operations [39]. The very long instruction word (VLIW) actions are the instructions processed
in a clock cycle in the switch, and the hash bits are the number of bits used internally to determine
table entries. The last parameter reported is the number of Stateful Arithmetic Logic Units (ALUs)
used. These units can perform atomic updates for extern functions.

5.1.2 Implementations

The following six implementations are compared against each other and the Reference. The buffer
size is dimensioned so the source code compiles for the Tofino™ target.

Digest The Digest implementation uses the LearningFilter to transmit the 12 bytes receipts to the
controller, as introduced in Section 4.2.2.

Network This implementation uses the mirror operation to send the first 48 immutable header
bytes and the 2 bytes wide timestamp to the controller over the Ethernet, as introduced in
Section 4.2.1.

Naive The Naive implementation uses the controller’s instructions but buffers the receipts in the
data plane as introduced in Section 4.3.3.

FIFO The FIFO implementation tracks the disclosures and stores the receipts in the data plane.
The implementation was introduced in Section 4.3.4.

FIFO Opt This implementation uses the FIFO implementation, but reduces the flowid to a single byte as
described in Section 4.4.2.

FIFO Note The FIFO Note implementation uses an additional byte to track the next disclosure number.
Thus, it does not rely on the timestamp to find the associated disclosure. The implementation
was introduced in Section 4.4.5.

5.1. HARDWARE RESOURCE USAGE 41

5.1.3 Results

Resource Reference Digest Network Naive FIFO FIFO
Opt

FIFO
Note

Stages 1 2 1 11 10 11 10
Match Crossbar 6 72 11 132 205 153 156

Map RAM 0 0 0 256 256 256 292
SRAM 4 4 9 268 279 278 318
TCAM 0 0 0 0 75 25 0

VLIW Actions 2 7 4 20 19 21 19
Hash Bits 40 104 80 361 393 409 472

Stateful ALUs 0 0 0 1 1 1 1

Table 5.1: Absolute resource usage summed over all stages of various P4 implementations on the
Tofino™.

Resource Reference Digest Network Naive FIFO FIFO
Opt

FIFO
Note

Stages 8.33% 16.67% 8.33% 91.67% 83.33% 91.67% 83.33%
Match Crossbar 0.26% 3.09% 0.47% 5.67% 8.81% 6.57% 6.70%

Map RAM 0% 0% 0% 44.44% 44.44% 44.44% 50.69%
SRAM 0.42% 0.42% 0.94% 27.92% 29.06% 28.96% 33.12%
TCAM 0% 0% 0% 0% 26.04% 8.68% 0%

VLIW Actions 0.52% 1.82% 1.04% 5.21% 4.95% 5.47% 4.95%
Hash Bits 0.80% 2.08% 1.60% 7.23% 7.87% 8.19% 9.46%

Stateful ALUs 0% 0% 0% 2.08% 2.08% 2.08% 2.08%

Table 5.2: Utilisation of the available resources on Tofino™. The percentage is the ratio between
the used resources summed over all stages divided by the available resources over all stages.

Stages All implementations with a register-based buffer (Naive, FIFO, FIFO Opt, FIFO Note)
use nearly all but 1 stage of the 12 available stages (Table 5.1). This high usage is due to two
factors: the dependencies of the critical path and the register placement favouring the largest
possible sizes. The dependencies force the usage of 3 stages as the direct disclosure threshold
needs to be fetched, and the next buffer index needs to be determined. For the second part, 7
to 8 stages in the Ingress pipeline are reserved for pure buffering (buffer stages), as introduced in
Section 4.4.2. Although the FIFO Opt has one less stage filled with registers due to not having the
next disclosure number, FIFO Note is compiled with one less stage, which is unintuitive. Based on
the compiler output, the FIFO Note parallelises the digest calculation and disclosure threshold
resolving, which is not done in other implementations. The last stage of the FIFO Opt contains a
single action. This action is executed in a previous stage in the FIFO Note. The exact reason for
these optimisations is unknown. Due to the simple operations, the Reference and Network only use
a single stage. The Digest implementation uses an additional stage to calculate the digest.

SRAM In addition to the high stage utilization, the SRAM for the registers utilized around
30% (Table 5.2) of the available SRAM. Although 30% might not directly seem high, this value is
reported over all stages. The first 3 stages’ utilisation is near 0%, whilst the buffer stages (7 to 8
stages) are utilised at 45% each. Naive, FIFO, and FIFO Opt have nearly identical SRAM usage (+-
1%) due to a similar amount of buffering stages and disclosure look-up table entries. FIFO Note

5.2. ACCURACY 42

stores one additional byte per receipt and thus requires more SRAM. Reference, Network and Digest
use only very little SRAM (< 1%) due to the few tables. The Network has an additional table for
resolving the destination for the receipts and thus has a slightly (0.5%) higher SRAM usage.

Map RAM All implementations with a register-based buffer (Naive, FIFO, FIFO Opt, FIFO Note)
use 45% of the Map RAM to support the registers, with the buffer stages having a utilisation
of 75%. Leaving only 25% of the resources available for other meters, counters or registers or
range entries with ageing. All implementations without registers and counters, namely Reference,
Network and Digest don’t utilize the Map RAM.

TCAM Due to the usage of the range match type, FIFO and FIFO Opt utilize up to 25% of the
available TCAM. More precisely, FIFO utilises the TCAM in the first stage 100% and FIFO fully
utilises the first 3 stages for determining the disclosure with the key < flowid, timestamp >. As
the flowid in the FIFO Opt is smaller than in the FIFO, less TCAM is required. None of the other
implementations use TCAM due to avoiding ternary matches.

Match Crossbar The more complex implementations have more actions and conditional, thus
containing more instructions and requiring more data inputs from the Match Crossbar. This can
be observed by comparing the Reference, Network and Digest implementations. As Digest requires
access to the data field to calculate the digest hash, the Match Crossbar usage increases by 2%.
The more complex remaining implementations use around 5% of the available Match Crossbar.
Their usage is similar due to the comparable data access patterns.

VLIW Actions Similarly to the Crossbar usage, the more instruction an implementation contains,
the more VLIW Actions are used, up to a maximum of 5.5% for the FIFO implementation.

Hash Bits As the hash bits are used to index tables with the match type exact, which also
includes registers, the hash bit usage increases with more complex and more extensive implemen-
tations. The highest usage is reported for FIFO Note, using 9.5% of the available hash bits, as it
contains the most registers.

Stateful ALUs A single Stateful ALU is required for the buffer-based implementations, as the
buffer index has to be increased atomically, thus requiring 1 Stateful ALU. Implementations without
a data plane buffer for receipts don’t use a Stateful ALU.

5.2 Accuracy

Accuracy is critical when deploying RPS, as the monitor uses missing receipts to attribute
packet loss. Hence, every implementation must report missing packets correctly due to memory
constraints. Furthermore, a high percentage of the disclosures compared to the reference RPS
Algorithm needs to be collected to satisfy the monitor’s target number of sample requirements.
We show the absolute number of collected samples, the number of disclosures, and the additional
time required to collect the target sample count compared to the set collection time of T = 10
minutes.

5.2. ACCURACY 43

5.2.1 Simulation Setup

To analyse the impacts of different RPS implementations, we created a simulator to reliably and
accurately replay packet traces without interference that occurs due to packet buffering or memory
contention. Its input is an experiment configuration consisting of three sub-configurations that
specify the entire experiment.

1. The trace configuration defines how multiple CAIDA traces are merged into a single .pcap

trace. This also includes options such as adding debug headers or reducing the packet to a
header-only format.

2. The algorithm parameters are the assumptions about the trace’s characteristics, such as the
rmin and rmax, as well as the fixed parameters, such as σ. For transparency, the buffer ratio
and buffer size are specified so as not to rely on the parameter solver.

3. The simulator supports various implementation types, each with multiple configuration
options. The implementation configuration specifies which parameters are used on which
instance of an implementation.

All three configuration parts are grouped into a single configuration file and passed to the
simulator as input. The simulator is responsible for parsing the .pcap trace and provide the
resulting receipt to every implementation, as well as the collection of the generated logging
artefacts, including the disclosures (Figure 5.1).

Simulation scope The simulator abstracts the hardware to focus on the implementation under
ideal conditions. In the context of the RPS implementation, this means that the processing of a
receipt and all effects caused by it are fully visible upon generating the following receipt unless
the implementation explicitly adds a delay. This assumption is acceptable for packet rates until
the Mpps range, as inter-packet times remain in the order of 1 us. However, at rates around Bpps,
only 1 ns between packets remain, and the implementation must be scaled out to keep the line
rate. With average packet sizes of 800 bytes in the CAIDA traces and Tier-1 AS such as Cogent
having an inter-city capacity of up to 6 Tbit/s [40], a full utilisation would reach 1.5 Bpps. During
normal operations, these links are, on the one hand, rarely fully saturated. On the other hand,
this traffic rate is not necessarily transmitted to neighbouring AS at a single location.

5.2.2 Methodology

In the experiments, two different datasets simulate the traffic behaviour an ISP might encounter.
The first trace type is referred to as balanced, while the second is referred to as imbalanced. All
datasets consist of multiple CAIDA [13] Traces are combined to produce realistic inter-packet
arrival times and packet headers. As network traffic differs daily and from hour to hour, every
dataset contains 6 combined traces to mimic the variability. A full overview of the used traces can
be found in Appendix B.

Balanced The balanced dataset consists of 6 combined traces, each composed of multiple CAIDA
traces interpreted as a single flow. Each source file is recorded on a different day, such that the up
to 8 flows combined into a trace have variabilities. Each combined trace in the dataset is replayed
with increasing flows from 1 to 8, increasing by powers of two. Every flow has a minimal rate of
400 Kpps and a maximal rate of approximately 700 Kpps (Figure 5.2), corresponding to an average

5.2. ACCURACY 44

Algorithm
Parameters

Trace
Configuration

Implementations

 Configuration Experiment

Experiment
Configuration

 Output
 For every implementation

 Simulator

Disclosures

Warnings

Event Log

Custom

Trace Generator

Reference
Implementation

X
Implementation

Runner

PCAP
Combination of

CAIDA trace files

Figure 5.1: Simulation workflow. The experiment setup and the used parameters are encoded in
a JSON file format to facilitate fast configurations and easy replicability. The simulation runner
replays a pre-computed trace and produces per-implementation artefacts, such as the list of all
disclosures.

rate per flow of 3.5 Gbit/s with an average packet size of 800 bytes. As every flow has a similar
rate, the combined trace is called balanced. This traffic type abstracts the operational mode under
normal conditions where a different ISP might have more flows, but the traffic share remains
constant. With increasing the number of flows, the scaling behaviour under similar conditions can
be analysed.

Imbalanced In contrast to the balanced dataset, the imbalanced dataset consists of 6 combined
traces, each containing a single flow collocated with a higher rate flow. We model this by
shifting multiple traces of a single day into a larger flow. Moving together n traces, we obtain an
amplification of n and thus model an imbalance of around 1 : n (Figure 5.3). Each combined trace
in the dataset is replayed with increasing imbalance from 1:1 till 1:8, increasing by powers of two.
The factor is only approximately 1 : n as traffic rates vary over time. To keep a realistic behaviour,
all source traces for the large flow are sourced from the same collection day. This scenario is used
to understand the impact of allocating multiple flows.

RPS Parameter Configuration For a deployed algorithm, the default collection time is T = 10
min. To keep the file sizes manageable, the constraint of simulating only a single minute of traffic
reduces the expected number of samples to Nγ,ε/T. To compare the collected disclosure number
to Nγ,ε, the number is scaled linearly as if the experiment ran for T minutes. Furthermore, we
use rmin = 200 Kpps, rmax = 700 Kpps, lossmin = 0.1%, ε = 10%, γ = 95%, κ = 100 ms, σ = 1%,
δhigh rate = 1.37 · 10−6, δlow rate = 2.185 · 10−5 and a threshold for switching between δhigh rate and
δlow rate at 437 Kpps. The R∗ is scaled by the number of flows. All parameters were chosen due to
their usage in the RPS paper. As R∗ is scaled, the buffer size is scaled by the optimised buffer
ratio of ≈ 0.24. With this buffer ratio, the non-optimised Tofino™ can fit a maximal of around 3.4
MB, whilst the optimised increases this limit to 4 MB (Figure 5.4) due to the reasons introduced

5.2. ACCURACY 45

0

1

2

3

4

5

6

Rate [Gbit/s]

1 2 3 4 5 6 7 8
Flowid

0 Kpps

200 Kpps

400 Kpps

600 Kpps

800 Kpps

1000 Kpps

Rate [pps]

Figure 5.2: Per-flow rate of the balanced
dataset, sampled every 50 ms.

0

5

10

15

20

25

30

Rate [Gbit/s]

1 2
Flowid

0 Kpps

1000 Kpps

2000 Kpps

3000 Kpps

4000 Kpps

5000 Kpps

Rate [pps]
Imbalance factor

1
2
4
8

Figure 5.3: Per-flow rate of the imbalanced
dataset, sampled every 50 ms.

in earlier sections (Section 4.4.2). This limitation results under the ideal disclosure strategy in a
peak handlable traffic capacity R∗ of up to 15 Gbit/s per pipeline1. Similarly, Figure 5.5 shows R∗

as packet rate per second. Assuming the worst case of minimal-sized packets, the Tofino™ can
handle up to 1.22 Gbit/s traffic under ideal disclosure conditions per pipeline.

10Gbit/s 20Gbit/s 30Gbit/s 40Gbit/s 50Gbit/s 60Gbit/s 70Gbit/s
R * : Peak node rate [Gbit/s]

0 MB

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

Available buffer size [Bytes]

Hardware limitation

Buffer type
12B FIFO
7B FIFO
12B Tofino
7B Tofino

Figure 5.4: Buffer size in relation to the peak
rate at the switch for a single pipeline, using
an average packet size of 800 bytes at rmin =
200 Kpps.

2Mpps 4Mpps 6Mpps 8Mpps 10Mpps
R * : Peak packet rate [pps]

0 MB

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

Available buffer size [Bytes]

Hardware limitation

Buffer type
12B FIFO
7B FIFO
12B Tofino
7B Tofino

Figure 5.5: Buffer size in relation to the peak
rate at the switch for a single pipeline at
rmin = 200 Kpps.

Reference To provide a compatible implementation of the RPS Algorithm presented in the RPS
paper, all simulated implementations are compared to the Reference implementation introduced in
Section 2.6. Furthermore, an Ideal implementation that uses the RPS Algorithm but with an infinite
buffer was used to compute the superset of all disclosures to ensure the validity of the generated
receipts of all implementations. In Appendix C, the Ideal and the Reference are compared. The
Reference uses the disclosure strategy based on the RPS Algorithm and has a finite buffer based on
the previously presented algorithm parametrisation.

1The Tofino™ has 2 or 4 independent pipelines based on the model

5.2. ACCURACY 46

5.2.3 Implementations

In this part of the evaluation, only the implementations that generate the receipts and buffer them
in the data plane are evaluated. As the interaction between data plane and control plane is needed,
we also provide delay implementations that model the delay until a value written by the control
plane is visible in the data plane. Research indicates that adding a table entry induces overheads
in the ideal case of around 26 us [41]. Although this value is only measured for inserting a table
entry, it is used as a reference for sending a signal to the controller and seeing the effect in the
data plane.

The following six implementations are considered due to the different buffer sizes:

FIFO This implementation uses the FIFO RPS Algorithm as presented in in the previous chapter.

delayedFIFO The implementation uses the FIFO RPS Algorithm as well as it adds a delay of 26 us for data
plane table modifications.

Tofino This implementation extends the FIFO implementation but limits the buffer size to 286K
buffer slots to store the 12 bytes wide receipt.

delayedTofino Extends the Tofino implementation by adding a delay of 26 us for modifying data plane table
entries.

TofinoOpt This implementation extends the FIFO implementation but limits the buffer size to the
optimal case of 573K buffer slots. A receipt consists of a 1 byte long flowid, 2 bytes for the
timestamp and 4 bytes for the digest. The number of flows is reduced to 256, and the mapping
is assumed to be predefined.

delayed
TofinoOpt

Extends the TofinoOpt implementation by adding a delay of 26 us for modifying data plane
table entries.

5.2.4 Overview

Before diving into an implementation-specific analysis, an overview of 6 different implementations
is provided. Combining all experiments run, mixing balanced and imbalanced datasets, the Ideal,
Reference and FIFO sample more than the lower limit of Nγ=95%,ε=10% and thus achieve the target
sample count before the defined collection time is reached (Figure 5.6). On the other hand, the
Tofino barely achieves the target collection time on average but requires over an hour in the worst
case. Hence, it seems that the FIFO can be comparable to the Reference, whilst the Tofino only
achieves this in some instances.

All implementations, except for the ones with the reduced buffer capacity due to the Tofino™’s
memory constraints (Tofino, delayedTofino), achieve an error rate ε smaller than the specified 10%
in 75% off all cases in both datasets, with only the Ideal implementation achieving an error level
always below 10% (Figure 5.7). The optimised implementations for the Tofino™ achieve the target
accuracy in around 40% of all cases, with worst-case results in the order of 50% error.

5.2. ACCURACY 47

Ideal Reference FIFO FIFO
delay

Tofino
opt

Tofino
opt delay

Implementation

100

101

102

Collection Time [min]

Target time

Figure 5.6: Actual collection time when con-
figured to T = 10 minutes, considering the
per-flow samples over all traces.

Ideal Reference FIFO FIFO
delay

Tofino
opt

Tofino
opt delay

Implementation

0%

10%

20%

30%

40%

50%

Error Level with = 95% [%]

Figure 5.7: Error rate achievable within the
collection time T = 10 minutes at γ = 95%.
Configured (target) error rate ε = 10%.

5.2.5 P4 Reference model

In this phase, the FIFO implementations are evaluated against the Reference, which uses the ideal
disclosure strategy with arbitrary buffer removals. Although the non-optimal disclosure strategy
(FIFO RPS Algorithm) is used for the FIFO and the delayedFIFO, the same target times and thus
accuracies, whilst collecting about 10% less receipts can be satisfied compared to the Reference.
Furthermore, imbalances between flows do not harm the overall sampling performance with
correctly scaled buffers under a non-optimal disclosure strategy. Additionally, the overhead of 26
us has a negligible impact on the sampling performance.

Accuracy Using the balanced dataset and evaluating the number of collected samples for the 1 to
8, flows by first starting at a single flow and adding more flows until 8 are reached, FIFO and
delayedFIFO requires about 10% more time to collect the same amount of disclosures as Reference
(Figure 5.8). Whilst Reference collects all samples below 10 min on average, the flow 7 takes 6%
longer to achieve the same number of samples on average. This is due to the different disclosure
strategies: Reference uses the FIFO RPS Algorithm that removes receipts instantly upon disclosure
and thus frees the buffer, allowing it to compensate for flow rate variabilities. The FIFO and
delayedFIFO use the FIFO RPS Algorithm as their disclosure strategy, and without removing the
receipts instantly, rate variabilities have a higher impact, as receipts from a different flow wait
for eviction. However, such minor violations can be fixed by slightly increasing the threshold of δ.
Comparing the worst-case performance, Reference requires an additional 20% time to collect the
samples whilst FIFO and delayedFIFO require an additional 40%, twice as much as Reference.

Stability To compare the stability of flows when adding additional flows with the balanced
dataset, the number of flows is increased and the difference in disclosure is evaluated compared
to the first flow observation. E.g. flow 1 is first observed with 1 flow; hence, when evaluating
2 flows, the ratio of disclosures #d2/#d1 can be assessed. Ideally, the flows have a ratio above
100% = 1.0, indicating that more flows lead to more collected disclosures due to the sharing of
unused buffer space.

Reference increases the number of collected samples in 6 out of 7 cases, whilst FIFO and
delayedFIFO only do this in 4 out of 7 cases (Figure 5.9). This can again be attributed to the
difference in the disclosure strategy. Comparing the overall spread, all implementations stay within
similar bounds, except for flow 1 when collocated with 7 other flows, indicating a comparable

5.2. ACCURACY 48

behaviour when increasing the overall traffic and buffer size. All implementations can gain
additional disclosures from sharing buffer capacity.

Furthermore, the performance impact of the delayedFIFO compared to the FIFO is negligible.
This is mainly due to using packet rates up to 5 Mpps, offering a time window of around 130
packets in the buffer, for an action to be processed. Combined with the possibility of multiple
disclosures being in the buffer, the impacts are insignificant, with a share of the difference around
0.15% compared to disclosures without delay (≤ 100 packets). However, more flows lead to more
variability and, thus, to the possibility of a larger impact of the delay.

1
1 flow

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x
Time factor to collect N , samples in T = 10 min

1 2
2 flows

1 2 3 4
4 flows

1 2 3 4 5 6 7 8
8 flows

Reference FIFO FIFO delay

Figure 5.8: Time compared to the baseline
of T = 10 min to collect the samples us-
ing the balanced dataset. The bars represent
the median, and the error bars represent
[min, max].

1
2 flows

60.00%

80%

100%

120.00%

140%

160%

180.00%

200%
Change compared to first occurrence [%]

1 2
4 flows

1 2 3 4
8 flows

Reference FIFO FIFO delay

Figure 5.9: Relative change per flow com-
pared to the first occurrence using the bal-
anced dataset.

Impact of imbalanced flows Switching to the imbalanced dataset and steadily increasing the
imbalance, all implementations collect the required samples before the target time runs out.
However, when comparing the number of collected samples, a difference can be noticed: Whilst
FIFO and delayedFIFO collect a constant amount of samples, within 90% of the target time, the
collection time is nearly halved from 1:1 to 1:8 for Reference’s flow 1. But again, this can be explained
by the different disclosure schemes and the threshold for changing between the disclosure rates
δ. With Reference, the larger flow removes more receipts from its buffer part because of the fixed
threshold. After switching the rate, there is no further adaptation and disclosures are very often
released such that the overall collection time drops to 10% of the target time (Figure 5.10). While
this is happening, the low-rate flow is not evicted from the buffer due to the self-clearing of the
high-rate flow. Thus, this low-rate flow can accumulate more receipts for the delayed disclosure.
For FIFO and delayedFIFO, this does not uphold, as the low-rate flow is pushed out by the FIFO
queue at the flow’s combined rate, making the ”growing” of the low-rate flow impossible.

As the buffer size satisfies the requirements, the number of disclosures stays for the small
flow within the collection time. Furthermore, when comparing the spread of the min-max
interval of flow 1, a noticeable difference can be observed between Reference and the other
two implementations: Whilst the spread is reduced from initially 0.7x to 0.25x, the other two
implementations’ spread remains nearly constant at around 0.85x. This, again, can be explained by

5.2. ACCURACY 49

the buffering behaviour and the constant removal of receipts when using the FIFO RPS Algorithm.
The second flow’s collection time is exponentially reduced, due to the usage of the single

threshold, showing the need for a more fine-grained disclosure rate control to avoid oversampling.

1 2
1:1

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x
Time factor to collect N , samples in T = 10 min

1 2
1:2

1 2
1:4

1 2
1:8

Imbalance factor between flow 1 and 2

Reference FIFO FIFO delay

Figure 5.10: Time compared to the baseline
of T = 10 min to collect the samples with the
imbalanced dataset. The error bars represent
[min, max].

1 2
1:2

0%

500%

1000%

1500%

2000%

2500%
Change compared to first occurrence [%]

1 2
1:4

1 2
1:8

Imbalance factor between flow 1 and 2

Reference FIFO FIFO delay

Figure 5.11: Relative change per flow com-
pared to the first occurrence using the imbal-
anced dataset.

Moving on and comparing the change to the first occurrence, the effect of the threshold and the
buffer sharing can be observed when looking at flow 2 of Reference in Figure 5.11. The number of
disclosures slightly decreases compared to FIFO and delayedFIFO. This is due to more disclosures
falling into the quiet time, as introduced in Section 2.5.6, because the buffer is clearing faster than
intended. The other two implementations are invariant to this effect as they cannot remove entries
from the buffer at arbitrary positions.

Collection time variability In both experiments, different intervals of the [min, max] from small
to large can be observed, posing the question of how this can be possible as every combined
trace in the dataset uses identical parameters (Figure 5.8, Figure 5.10). The observed behaviour is
due to the network traffic’s burstiness, the linear scaling from a single minute to 10 min and the
single-state rate tracker used.

The smallest interval was found with a range of 0.05 in the imbalanced dataset on flow 2
for the imbalance factor 1:8 and the largest at 1.1 for the balanced dataset at 8 flows for flow 3.
Translating these ratios into a pure time based on T, they range from 30 sec to 11 min. With
T = 10 min, requiring nearly twice the collection time to collect the samples is far from ideal.
However, the achieved performance was scaled by 10x, amplifying under- or oversampling effects.
Such undersampling effects can be caused by traffic bursts, causing more than average receipts to
be discarded due to the quiet time. With a burst occurring, the single-state rate-tracker causes
an overestimation of the rate and, thus, a lower sampling performance. An optimisation of the
rate-tracker could use a moving average for the rate to compensate for this, as it was suggested in
the RPS paper.

5.2. ACCURACY 50

5.2.6 Tofino model

The Tofino™ imposes a strict buffer size limit and thus allows only for a reduced rate as introduced
in the RPS parameter configuration (Section 5.2.2). In this section, the implementations on the
Tofino™ are exposed to traffic rates overwhelming their specified buffer size.

Hence, these findings serve as an indicator of the behaviour if insufficient buffer size is
provided. Overall, the Tofino fails to collect the required samples within the target time if more
than 2 flows are involved in the balanced dataset or the imbalance exceeds 1:2 in the imbalanced
dataset.

Not enough samples The investigation of the limited buffer size starts by comparing the number
of collected samples with increasing flows on the balanced dataset. While all 5 implementations
collect more than the required number of samples for a single flow, Tofino and delayedTofino fail
to collect the samples for 2 flows (≈ 1 Mpps). With 4 flows, both of these implementations only
collect around 1/3 of the required samples, dropping to near 0 with 8 flows. A similar fate, but
only staring at 4 flows (≈ 2 Mpps), is encountered by TofinoOpt and delayedTofinoOpt (Figure 5.12).

Comparing the change of each flow with an increasing number of flows, the detrimental
impact of an under-sized buffer (280K entries instead 1375K required entries) for a given packet
rate can be seen when looking at the min-max interval of Tofino and delayedTofino at 8 flows, which
only spans around 1K packets whilst the optimised implementations with 2x the buffer size have
a range of around 20K entries (Figure 5.13).

1
1 flow

0 K

20 K

40 K

60 K

80 K

100 K

120 K

Number of disclosures

1 2
2 flows

1 2 3 4
4 flows

1 2 3 4 5 6 7 8
8 flows

Reference
Tofino

Tofino delay
Tofino opt

Tofino opt delay

Figure 5.12: Number of samples collected
within a minute using the balanced dataset.
The error bars represent [min, max].

1
2 flows

-40 K

-20 K

0 K

20 K

40 K

60 K
Change compared to first occurrence

1 2
4 flows

1 2 3 4
8 flows

Reference
Tofino

Tofino delay
Tofino opt

Tofino opt delay

Figure 5.13: Absolute change of the collected
samples per flow compared to the first oc-
currence using the balanced dataset.

Victimizing low-rate flows Revisiting the imbalanced dataset and comparing the number of
disclosures, the results of the balanced dataset are repeated for the lower-rate flow with the number
1. The Tofino and delayedTofino collect enough samples for the 1:2 imbalance, but for all further
imbalances fail to collect enough samples due to the limited buffer size and the quiet time
rendering samples in the too small, (5x too little capacity at 1:8), nearly useless and thus leads to
near zero collected samples. However, this is different for flow 2 of the optimised implementations

5.3. PERFORMANCE 51

1 2
1:1

0 K

200 K

400 K

600 K

800 K

1000 K

Number of disclosures

1 2
1:2

1 2
1:4

1 2
1:8

Imbalance factor between flow 1 and 2

Reference
Tofino

Tofino delay
Tofino opt

Tofino opt delay

Figure 5.14: Number of samples collected
within a minute using the imbalanced dataset.
The bars represent the median, and the error
bars represent [min, max]

1 2
1:2

10 3

10 2

10 1

100

101

Change compared to first occurrence [%]

1 2
1:4

1 2
1:8

Imbalance factor between flow 1 and 2

Reference
Tofino

Tofino delay
Tofino opt

Tofino opt delay

Figure 5.15: Relative change per flow com-
pared to the first occurrence using the imbal-
anced dataset.

(TofinoOpt and delayedTofinoOpt) with the 7 bytes receipts offering 2x buffer capacity, leading to a
buffer that is only 2.5x too small: These implementations manage to collect enough samples for
the larger flows, peaking at an imbalance of 1:4, before decreasing due to the too-fast eviction
causing the quiet time to impact the receipts.

This shows the behaviour if a flow with a rate below rmin is encountered on an otherwise
utilized sampling node, showing a weakness of the FIFO RPS Algorithm compared to the RPS
Algorithm.

5.3 Performance

To estimate the achievable performance on real hardware and to verify the simulator’s results, the
digest and annotated FIFO implementations are run on the Edgecore Networks WEDGE100BF-32Q.

5.3.1 Setup

The available infrastructure of the Networked Systems Group’s lab at ETH Zürich was used to
obtain results from a real hardware target.

Environment The hardware setup (Figure 5.16) is located in the lab of the NSG and consists
of a Edgecore Networks WEDGE100BF-32Q connected to a virtual machine with a dual port
NIC. Traffic is sent and received using a Mellanox ConnectX-6 Dx EN2 with the mlnx-en-23.10
driver installed. The card is connected using a PCIe Gen 4.0 x16 bus and is directly passed to the
virtualised Ubuntu 18.04.6. The NIC is connected to the virtualised two 100 Gbit/s links that use
Reed–Solomon error correction. On the switch side, an Edgecore Networks WEDGE100BF-32Q is
used that runs Ubuntu 16.04.6 LTS on the BMC and has the Intel® P4 Studio SDE 9.9 installed.
2MCX623106AS-CDAT

5.3. PERFORMANCE 52

The two 10 Gbit/s interfaces are implemented as an on-board Intel® Ethernet Controller X552
10 GbE SFP+ dual-port network card using the ixgbe driver in the version 4.2.1. Communication
from and to the Tofino™ ASIC is facilitated through a PCIe Gen 2 x4 interface, managed by the
Intel®’s supplied kernel driver.

 Intel Tofino ASIC

10 Gbit/s

10 Gbit/s

Port 31

Port 32

Port 64

Port 66

 Switch BMC

Python
Controller

 Edgecore Networks WEDGE100BF-32Q

100 Gbit/s, RS

100 Gbit/s, RS

PCIe Gen 2 x4 Mellanox VM

 Mellanox
 ConnectX-6

Port 0

Port 1

tcpreplay

tcpdump

Figure 5.16: Connection overview of the testbed.

Baseline Using iperf-3.16, and the Tofino™ configured using an L2 forwarding P4 program, a
performance of 90 Gbit/s could be established. Although there are some drawbacks of sending and
receiving on the same machine, and the machine being virtualised has drawbacks in performance,
these do not affect the measurements performed in this work.

Controller Implementation The controller for the P4 program is implemented in Python and
uses the BF Runtime API to interact with the switching ASIC.

5.3.2 Methodology

The first combined trace of the balanced dataset introduced in Section 5.2.2 is reused. Additionally,
the pre-computed expected disclosures obtained in the previous experiments of the Reference
implementation are used as a reference. The algorithm parametrisation presented in Section 5.2.2
is reused.

A reduced dataset called balanced reduced, consisting of the first 10 million packets of the first
combined trace with two flows from the balanced dataset, is used additionally for a more detailed
analysis of implementation behaviour. The trace lasts 9.2 seconds and has an average packet rate
of 1.083 Mpps.

5.3.3 Implementation

The following implementation was chosen to run on the hardware to be compared against the
Reference:

Digest The digest implementation uses LearningFilter to transmit the 12 bytes wide receipts to the
controller. The buffering and delayed disclosure of receipts is handled in the controller. The
implementation is introduced in Section 4.2.2.

5.3. PERFORMANCE 53

The implementation for sampling on the controller using the Ethernet interface was not
evaluated due to early performance issues using the Python network library scapy [42], allowing
only around 3′000 Kpps traffic to be processable without drops. Furthermore, complications with
the Tofino™ and the X552 that could not be resolved on time, led to the omission.

The timestamp-based implementations were not evaluated due to the computational overhead
in computing time ranges in the controller, leaving the implementation and evaluation to future
work.

5.3.4 Controller-based sampling on the Tofino™

Although the controller-based implementations do not satisfy the design goal of pushing as much
complexity to the data plane, the accuracy of the Digest implementation is evaluated. We find
that only 1.5% of all receipts generated in the data plane are processed by the controller due to
overheads in the used controller framework. Hence, the theoretical performance of 141 Mpps, as
introduced in Section 4.2.2, is far from reachable using our implementation, handling around 4
Kpps.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Receipts [%]

200K 250K 300K 350K 400K 450K 500K 550K
Replay rate [pps]

100K

150K

200K

250K

300K

350K

400K

450K

Received receipts

Figure 5.17: Number of collected receipts
using balanced reduced whilst replaying at
different speeds.

Receiving Sampling
Collection method

0

1

2

3

4

5

Processing time [ms]

Figure 5.18: Time between two subsequent
processing calls. This includes the time to
fetch the data and then process it. Results
are based on balanced reduced.

Sustaining digest rates As Digest relies on the RPS Algorithm, the sampling is identical to
Reference. Thus, it needs to be shown that all generated receipts in the data plane reach the control
plane. Replaying the balanced reduced trace at various speeds, resulting in different packet rates,
we count the number of receipts received by the control plane.

Around 1.5% of all receipts generated in the data plane are received by the Python controller
for rates above 300 Kpps and around 3.5% for rates below until the testing minimum at 200
Kpps is reached (Figure 5.17). Lowering the sending rate, we found that no more receipts are
lost at a rate of 4 Kpps and below. This result is off by a factor of 35′250 from the theoretically
achievable 141 Mpps receipts transmitted. The low performance can be explained by the used APIs
to obtain the receipts. The implementation uses the BF Runtime API, which offers a programming
language agnostic interface due to the communication with a gRPC [43] server to exchange data

5.3. PERFORMANCE 54

and commands. On the one hand, this adds delay, whilst, on the other hand, Python adds an
overhead in changing the data representation. The data is parsed from the request and placed in a
list of dictionaries offered to the high-level controller. However, it is unclear if a highly-optimized
implementation will reach the theoretical rates, as the digest bandwidth is not documented.

Processing delay The RPS paper implementation added an extra latency of 1.2 us for every packet
on average. Our implementation requires an average 79 us processing time in the controller, and
the performance of the data plane remains unaffected. To measure the performance impact on the
controller, the time between two subsequent polls for a digest is measured, including the number
of digests contained. To get the overhead added by the RPS Algorithm implemented in Python,
the Receive latency, consisting of just getting the receipts compared, is compared to the Sampling
latency, which adds the time to add the receipt to the RPS Algorithm.

Using the balanced reduced trace and a buffer size of 171′000, the average receipt processing
time, including the digest acquisition, is 333 us. Compared to just receiving the receipt, which
takes an average of 254 us, the sampling adds an overhead of 79 us (Figure 5.18), requiring 31%
more time per packet. But this is just the average, delayed disclosures cause delay spikes of up to
5 ms.

Chapter 6

Conclusion and Outlook

We have shown that RPS can be run in the data plane by adapting the sampling algorithm from
an implementation in a general-purpose language into P4. In the experiments on the balanced
dataset, we showed that the changes made to the algorithm only affect the sampling performance
by around 10%, while maintaining the target accuracy on both datasets on average in all but one
traces. When simulating the possible performance on a Tofino™, we found a maximal sampling
capacity per pipeline of 2.38 Mpps at a rmin = 200 Kpps, equivalent to 15.29 Gbit/s at an average
size of 800 bytes per packet. This sampling capacity can be sustained whilst utilizing 30% of
the overall SRAM available per pipeline. By implementing a hybrid without relying on the
integrated switch NIC, we found performance limitations when using Python and the Bf Runtime
API. Furthermore, we identified the possibility of improving the overall sampling performance in
the data plane by increasing the selection rate σ by 50% to 1.5%, achieving a sampling capacity of
3.18 Mpps (20 Gbit/s) per pipeline.

Takeaways Our results indicate that in-data plane sampling is possible with P4-enabled switches
on the market is possible. Bringing the advantage of minimizing the additional network bandwidth
for sampling and not impacting the forwarding latency by removing the need for a dedicated
sampling device. Whilst these benefits are useful for specific situations, we see limited usefulness
on the Tofino™ in a pure in-data plane sampling configuration, as utilizing the NIC to the BMC
and running the reference implementation leads to 3x the performance. An ISP might favour
this approach as it allows for more extensive usage of the tight SRAM resources on the device.
Furthermore, a monitor entity might also favour this approach as more fine-grained flows can
be defined with the available host memory two to three orders of magnitude larger than the
Tofino™’s in-data plane memory.

6.1 Future work

We identify multiple opportunities for future work based on this work’s observations. These
include an optimised RPS controller to achieve the best performance on the Tofino™, allowing for
extensive testing, an evaluation of different devices and their storage capabilities and the need for
an overall framework for RPS to allow for efficient optimisations.

Optimisation Except for the simulator, this work used Python implementations that proved to be
a bottleneck with increasing traffic rates. Hence, we recommend the implementation of a Tofino™-
centric sampler using the C-API and the Data Plane Developer Kit (DPDK) [17] to guarantee the

55

6.2. CONCLUSION 56

best possible performance. Additionally, an upgrade to the Tofino™ 2 is recommended to profit
from more stages, larger SRAM and higher PCIe bandwidths. Furthermore, the sampler was
the only service running on the switch, and additional effort is needed to integrate it with other
services. Lastly, an optimisation based on a fixed number of flows with a per-flow buffer could be
implemented and evaluated to prevent the victimisation of small flows.

Extensive testing We used a simulator to understand the sampling performance implications
and circumvent the need for a highly optimised implementation. However, with the previously
mentioned performance improvements implemented, a real-world experiment can be devised us-
ing multiple sampling nodes to show the exact performance. Using traffic generation frameworks
like MoonGen [44] or Cisco TRex [45] to generate loads over 100 Mpps with customisable flows, the
impact of the parametrization, such as rmin, σ and the operational regime, can be understood in
real-time, avoiding the simulation overhead. We tried to use MoonGen; however, compatibility
issues and the prioritization of the simulator in the available time led to the discontinuation of
this path.

Alternative devices With the Tofino™ now being 8 years old, new P4-capable devices have been
published. With the trend of increasing SRAM sizes [34], larger receipt buffers can be maintained
in the data plane. Furthermore, the implementations are not limited to programmable data planes:
Ribosome [46], a stateful packet processor, splits headers and processes them on a dedicated server.
RPS could be run additionally there, combining advanced stateful processing with RPS.

RPS Framework Due to RPS not being standardized with set rules and having an accessible
monitor, optimizations are difficult to perform as they require specific assumptions. We avoided
this by comparing the accuracy of the implementations against the reference, but questions such
as how the monitor reacts if fewer samples are collected due to buffer limitations or if many
late disclosure warnings are reported remain. Both are important as fewer samples reduce the
expressiveness of calculated metrics, and an ISP can use many late disclosures to cheat. Hence,
the monitor requires additional policies on handling various buffer sizes or the general case, if an
ISP cannot provide large enough buffers. Furthermore, RPS requires parameter synchronisation
over multiple ISPs to ensure sampling consistency. A protocol that takes the ISPs’ traffic rates and
available buffer size is needed to facilitate this.

Different hash algorithms and their impact on the overall framework should be evaluated,
especially for programmable data planes usage. Finally, to define meaningful aggregates, metadata
for each disclosed packet has to be collected when seeing a flow for the first time. Future work
can focus on determining if a flow is seen for the first time and how the metadata is collected as
additional storage space is required.

6.2 Conclusion

By implementing RPS in P4 for the Tofino™, we showed that sampling in the data plane without
additional hardware is possible. Using a simulator, we showed that with the limited memory
resources in the data plane as well as with the constrained memory primitives, a performance of
up to 56 Gbit/s while utilizing around 30% of the available SRAM can be achieved. We identified
the limited memory as the bottleneck of in-data plane sampling and also provided alternatives
using a hybrid approach, capable of sampling over 100 Gbit/s independent of the traffic patterns

6.2. CONCLUSION 57

due to utilizing the host’s main memory. With this hybrid approach, ISPs can prove to their
customers that they honour their SLAs with minimal impact on the switches’ feature richness,
potentially leading to a more transparent Internet.

Bibliography

[1] Cogent, “Service Level Agreement of Cogent.” [Online]. Available: https://www.cogentco.
com/files/docs/network/performance/global sla.pdf

[2] “Internet Control Message Protocol,” Internet Engineering Task Force, Request
for Comments RFC 792, Sep. 1981, num Pages: 21. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc792

[3] C. Pappas, K. Argyraki, S. Bechtold, and A. Perrig, “Transparency Instead of Neutrality,” in
Proceedings of the 14th ACM Workshop on Hot Topics in Networks, ser. HotNets-XIV. New York,
NY, USA: Association for Computing Machinery, Nov. 2015, pp. 1–7. [Online]. Available:
https://dl.acm.org/doi/10.1145/2834050.2834082

[4] P. Nikolopoulos, C. Pappas, K. Argyraki, and A. Perrig, “Retroactive Packet
Sampling for Traffic Receipts,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 3, no. 1, pp. 19:1–19:39, Mar. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3322205.3311090

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker, “P4: programming protocol-independent packet
processors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, Jul.
2014. [Online]. Available: https://doi.org/10.1145/2656877.2656890

[6] S. Lee, “Reducing complexity of large-scale network configuration management,”
Ph.D., Carnegie Mellon University, United States – Pennsylvania, 2010, iSBN:
9781124101866 Publication Title: ProQuest Dissertations and Theses. [Online]. Available:
https://www.proquest.com/docview/733012977/abstract/95A54DCF02014F18PQ/1

[7] G. Simsek, D. Ergenç, and E. Onur, “Reliable and Distributed Network Monitoring
via In-band Network Telemetry,” Dec. 2022, arXiv:2212.14876 [cs]. [Online]. Available:
http://arxiv.org/abs/2212.14876

[8] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic observation,”
ACM SIGCOMM Computer Communication Review, vol. 30, no. 4, pp. 271–282, Aug. 2000.
[Online]. Available: https://dl.acm.org/doi/10.1145/347057.347555

[9] G. Carle, S. Zander, and T. Zseby, “Evaluation of building blocks for pure passive One-way-
delay measurements,” 2001.

[10] K. Argyraki, P. Maniatis, and A. Singla, “Verifiable Network-Performance Measurements,”
in Proceedings of the 6th International COnference, Nov. 2010, pp. 1–12, arXiv:1005.3148 [cs].
[Online]. Available: http://arxiv.org/abs/1005.3148

58

https://www.cogentco.com/files/docs/network/performance/global_sla.pdf
https://www.cogentco.com/files/docs/network/performance/global_sla.pdf
https://datatracker.ietf.org/doc/rfc792
https://datatracker.ietf.org/doc/rfc792
https://dl.acm.org/doi/10.1145/2834050.2834082
https://dl.acm.org/doi/10.1145/3322205.3311090
https://doi.org/10.1145/2656877.2656890
https://www.proquest.com/docview/733012977/abstract/95A54DCF02014F18PQ/1
http://arxiv.org/abs/2212.14876
https://dl.acm.org/doi/10.1145/347057.347555
http://arxiv.org/abs/1005.3148

BIBLIOGRAPHY 59

[11] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping adversary identification for data plane
security,” in Proceedings of the 2008 ACM CoNEXT Conference, ser. CoNEXT ’08. New York,
NY, USA: Association for Computing Machinery, Dec. 2008, pp. 1–12. [Online]. Available:
https://dl.acm.org/doi/10.1145/1544012.1544036

[12] J. Tyson, “Howstuffworks ”How Internet Infrastructure Works”.” [Online]. Available: https:
//web.stanford.edu/class/msande91si/www-spr04/readings/week1/Howstuffworks.htm

[13] “The CAIDA UCSD Anonymized Internet Traces - 2018,” Apr. 2018. [Online]. Available:
https://www.caida.org/catalog/datasets/passive dataset/

[14] M. Rouse, “Optical Carrier,” Jan. 2014. [Online]. Available: https://www.techopedia.com/
definition/2735/optical-carrier-oc

[15] “Cisco NetFlow Overview.” [Online]. Available: https://www.cisco.com/c/dam/en/us/td/
docs/routers/asr920/configuration/guide/netmgmt/fnf-xe-3e-asr920-book.html

[16] G. Harris and M. Richardson, “PCAP Capture File Format,” Internet Engineering Task Force,
Internet Draft draft-gharris-opsawg-pcap-01, Dec. 2020, num Pages: 29. [Online]. Available:
https://datatracker.ietf.org/doc/draft-gharris-opsawg-pcap-01

[17] T. L. Foundation, “Home.” [Online]. Available: https://www.dpdk.org/

[18] D. Bahr, “d-bahr/CRCpp,” Mar. 2024, original-date: 2016-05-01T06:24:31Z. [Online].
Available: https://github.com/d-bahr/CRCpp

[19] S. Gueron, “Intel’s New AES Instructions for Enhanced Performance and Security,” in Fast
Software Encryption, O. Dunkelman, Ed. Berlin, Heidelberg: Springer, 2009, pp. 51–66.

[20] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger, R. Frank, and
M. Menth, “A Survey on Data Plane Programming with P4: Fundamentals, Advances, and
Applied Research,” arXiv:2101.10632 [cs], Jan. 2021, arXiv: 2101.10632. [Online]. Available:
http://arxiv.org/abs/2101.10632

[21] C. Klopfstein, “A benchmark suite to estimate potential performance of sPIN on switches,”
Feb. 2021.

[22] T. P. L. Consortium, “P4˜16˜ Language Specification,” May 2023. [Online]. Available:
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html

[23] “p4lang/behavioral-model,” Jan. 2024, original-date: 2015-01-26T21:43:23Z. [Online].
Available: https://github.com/p4lang/behavioral-model

[24] A. Agrawal and C. Kim, “Intel Tofino2 – A 12.9Tbps P4-Programmable
Ethernet Switch.” IEEE Computer Society, Aug. 2020, pp. 1–32. [Online]. Available:
https://www.computer.org/csdl/proceedings-article/hcs/2020/09220636/1nTub1lNEwU

[25] C. Intel, “Intel® Tofino 2 12.8 Tbps, 20 stage, 4 pipelines - Product Specifications.”
[Online]. Available: https://www.intel.com/content/www/us/en/products/sku/218648/
intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html

[26] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An Exhaustive Survey on P4 Programmable Data
Plane Switches: Taxonomy, Applications, Challenges, and Future Trends,” arXiv:2102.00643
[cs], Feb. 2021, arXiv: 2102.00643. [Online]. Available: http://arxiv.org/abs/2102.00643

https://dl.acm.org/doi/10.1145/1544012.1544036
https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/Howstuffworks.htm
https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/Howstuffworks.htm
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.techopedia.com/definition/2735/optical-carrier-oc
https://www.techopedia.com/definition/2735/optical-carrier-oc
https://www.cisco.com/c/dam/en/us/td/docs/routers/asr920/configuration/guide/netmgmt/fnf-xe-3e-asr920-book.html
https://www.cisco.com/c/dam/en/us/td/docs/routers/asr920/configuration/guide/netmgmt/fnf-xe-3e-asr920-book.html
https://datatracker.ietf.org/doc/draft-gharris-opsawg-pcap-01
https://www.dpdk.org/
https://github.com/d-bahr/CRCpp
http://arxiv.org/abs/2101.10632
https://staging.p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://github.com/p4lang/behavioral-model
https://www.computer.org/csdl/proceedings-article/hcs/2020/09220636/1nTub1lNEwU
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
http://arxiv.org/abs/2102.00643

BIBLIOGRAPHY 60

[27] “Intel® Tofino™ Series Programmable Ethernet Switch ASIC,” Jun. 2021. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html

[28] J. Heinanen and R. Guerin, “A Two Rate Three Color Marker,” Internet Engineering Task
Force, Request for Comments RFC 2698, Sep. 1999, num Pages: 5. [Online]. Available:
https://datatracker.ietf.org/doc/rfc2698

[29] X. Chen, “Implementing AES Encryption on Programmable Switches via Scrambled Lookup
Tables,” in Proceedings of the Workshop on Secure Programmable Network Infrastructure, ser.
SPIN ’20. New York, NY, USA: Association for Computing Machinery, Aug. 2020, pp. 8–14.
[Online]. Available: https://dl.acm.org/doi/10.1145/3405669.3405819

[30] “An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses
to 48.bit Ethernet Address for Transmission on Ethernet Hardware,” Internet Engineering
Task Force, Request for Comments RFC 826, Nov. 1982, num Pages: 10. [Online]. Available:
https://datatracker.ietf.org/doc/rfc826

[31] M. Stigge, H. Plötz, W. Müller, and J. Redlich, “Reversing CRC { Theory and Practice,”
2006. [Online]. Available: https://www.semanticscholar.org/paper/Reversing-CRC-%
7B-Theory-and-Practice-Stigge-Pl%C3%B6tz/03ccbe5cd0650fa7e69cae2b655b035c7e574685

[32] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and T. Hoefler, “Flare: Flexible In-Network
Allreduce,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2021, pp. 1–16, arXiv:2106.15565 [cs]. [Online].
Available: http://arxiv.org/abs/2106.15565

[33] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan, L. Liu, Z. Ding,
X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo, “Tiara: A Scalable and Efficient Hardware
Acceleration Architecture for Stateful Layer-4 Load Balancing,” 2022, pp. 1345–1358. [Online].
Available: https://www.usenix.org/conference/nsdi22/presentation/zeng

[34] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making Stateful Layer-4 Load
Balancing Fast and Cheap Using Switching ASICs,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, Aug. 2017, pp. 15–28. [Online]. Available:
https://dl.acm.org/doi/10.1145/3098822.3098824

[35] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Rüth, and K. Wehrle, “Demystifying the Performance of
XDP BPF,” in 2019 IEEE Conference on Network Softwarization (NetSoft), Jun. 2019, pp. 208–212.
[Online]. Available: https://ieeexplore.ieee.org/document/8806651/references#references

[36] “Cisco IOS NetFlow.” [Online]. Available: https://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html

[37] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems,” IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008), pp. 1–499, Jun.
2020, conference Name: IEEE Std 1588-2019 (Revision ofIEEE Std 1588-2008). [Online].
Available: https://ieeexplore.ieee.org/document/9120376

[38] “nsg-ethz/p4-utils,” Mar. 2024, original-date: 2017-11-13T11:50:15Z. [Online]. Available:
https://github.com/nsg-ethz/p4-utils

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://datatracker.ietf.org/doc/rfc2698
https://dl.acm.org/doi/10.1145/3405669.3405819
https://datatracker.ietf.org/doc/rfc826
https://www.semanticscholar.org/paper/Reversing-CRC-%7B-Theory-and-Practice-Stigge-Pl%C3%B6tz/03ccbe5cd0650fa7e69cae2b655b035c7e574685
https://www.semanticscholar.org/paper/Reversing-CRC-%7B-Theory-and-Practice-Stigge-Pl%C3%B6tz/03ccbe5cd0650fa7e69cae2b655b035c7e574685
http://arxiv.org/abs/2106.15565
https://www.usenix.org/conference/nsdi22/presentation/zeng
https://dl.acm.org/doi/10.1145/3098822.3098824
https://ieeexplore.ieee.org/document/8806651/references#references
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://ieeexplore.ieee.org/document/9120376
https://github.com/nsg-ethz/p4-utils

BIBLIOGRAPHY 61

[39] H. Zolfaghari, D. Rossi, and J. Nurmi, “Reducing Crossbar Costs in the Match-
Action Pipeline,” in 2019 IEEE 20th International Conference on High Performance
Switching and Routing (HPSR), May 2019, pp. 1–6, iSSN: 2325-5609. [Online]. Available:
https://ieeexplore.ieee.org/document/8808105

[40] Cogent, “Network Map of Cogent.” [Online]. Available: https://www.cogentco.com/en/
network/network-map

[41] H. Stubbe, S. Gallenmüller, M. Simon, E. Hauser, D. Scholz, and G. Carle, “Keeping up
to Date with P4Runtime: An Analysis of Data Plane Updates on P4 Switches,” in 2023
IFIP Networking Conference (IFIP Networking), Jun. 2023, pp. 1–9, iSSN: 1861-2288. [Online].
Available: https://ieeexplore.ieee.org/document/10186439

[42] “Scapy Introduction — Scapy 2.5.0 documentation,” Mar. 2024. [Online]. Available:
https://scapy.readthedocs.io/en/latest/introduction.html

[43] “gRPC.” [Online]. Available: https://grpc.io/

[44] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “MoonGen: A Scriptable
High-Speed Packet Generator,” in Proceedings of the 2015 Internet Measurement Conference,
ser. IMC ’15. New York, NY, USA: Association for Computing Machinery, Oct. 2015, pp.
275–287. [Online]. Available: https://doi.org/10.1145/2815675.2815692

[45] “TRex,” 2024. [Online]. Available: https://trex-tgn.cisco.com/

[46] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostić, and M. Chiesa, “A
{High-Speed} Stateful Packet Processing Approach for Tbps Programmable Switches,”
2023, pp. 1237–1255. [Online]. Available: https://www.usenix.org/conference/nsdi23/
presentation/scazzariello

https://ieeexplore.ieee.org/document/8808105
https://www.cogentco.com/en/network/network-map
https://www.cogentco.com/en/network/network-map
https://ieeexplore.ieee.org/document/10186439
https://scapy.readthedocs.io/en/latest/introduction.html
https://grpc.io/
https://doi.org/10.1145/2815675.2815692
https://trex-tgn.cisco.com/
https://www.usenix.org/conference/nsdi23/presentation/scazzariello
https://www.usenix.org/conference/nsdi23/presentation/scazzariello

Appendix A

Average packet size based on CAIDA
traces

The RPS paper uses 500 bytes as the average packet size on the internet. Investigating this using
the CAIDA [13] traces from 2018, we found an average of 800 bytes more likely. We reported the
average packet rate using capinfos and plotted this average grouped by the collection day, as
shown in Figure A.1. All traces have a rate above 800 pps, except for the 21.09.2018, which had a
median of the averages at 790 bytes per packet.

20180315 20180419 20180517 20180621 20180719 20180816 20180921 20181018 20181115 20181220
collection

750B

800B

850B

900B

950B

Av
er

ag
e

pa
ck

et
 si

ze
 (b

yt
es

)

Figure A.1: Overview of the average packet sizes in CAIDA traces based on the collection day.

I

Appendix B

Trace configuration

The following CAIDA [13] traces were used to create the balanced (Table B.1) and imbalanced
(Table B.2) traces. For the balanced traces, an experiment with 4 flows for a given trace out of the
six contains the flows 1, 2, 3 and 4. The imbalanced traces consists of a lower-rate flow with the flowid
1 and a higher-rate flow with flowid 2. The imbalance factor is the ratio of traces and signifies the
approximate rate ratio between the lower-rate flow and the higher-rate flow. A trace of imbalance
1:4 consists of the trace of the lower-rate flow and the combination of the traces of the imbalance
factors 1:1, 1:2, 1:3 and 1:4. All traces are extracted from the point equinix-nyc.dirA and use the
in-file timestamps with microsecond precision. The combiner application merges used combines
the traces by timestamp and flowid and writes the output file with nanosecond precision. Hence,
if timestamps are equal, the flowid will be used as the following ordering criterion.

flowid Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6
1 20180719-130000 20180315-130000 20181018-130300 20180419-130300 20180719-130100 20180719-130700
2 20180816-130000 20181115-130400 20180315-130000 20180517-130600 20180517-130500 20180621-130000
3 20180921-130000 20180621-130800 20180621-130800 20180315-132900 20181018-130200 20180419-131400
4 20181018-130000 20180419-130600 20180816-130300 20181115-130100 20180315-130300 20181220-130000
5 20181115-130000 20181220-130200 20180419-131000 20181220-130100 20181115-130400 20181115-130300
6 20181220-130000 20180921-130300 20180719-130400 20180921-130100 20180419-131500 20180816-130400
7 20180517-130300 20180719-130800 20180517-130300 20180719-130800 20180921-130200 20180719-130300
8 20180621-130000 20181018-130400 20180921-130000 20181018-130400 20180816-130100 20181220-130300

Table B.1: Trace configuration for the balanced flows. Every trace is used as a sample trace. The
full name, as available on the website, is equinix-nyc.dirA.< entry >.UTC.anon.pcap

flowid ratio Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6
1 - 20180816-130000 20181018-130100 20180921-130200 20180517-130500 20181115-130400 20180719-130100
2 (1:1) 20180719-130000 20180816-130200 20181018-130400 20180719-130500 20180921-130200 20180517-133000
2 (1:2) 20180719-130100 20180816-132600 20181018-130100 20180719-130600 20180921-132800 20180517-132700
2 (1:3) 20180719-130200 20180816-130000 20181018-130000 20180719-130200 20180921-130100 20180517-130300
2 (1:4) 20180719-130300 20180816-132400 20181018-130300 20180719-130000 20180921-130000 20180517-125910
2 (1:5) 20180719-130400 20180816-130300 20181018-131600 20180719-130800 20180921-132700 20180517-130400
2 (1:6) 20180719-130500 20180816-132300 20181018-130200 20180719-130900 20180921-130300 20180517-133300
2 (1:7) 20180719-130600 20180816-130400 20181018-131700 20180719-130100 20180921-132900 20180517-130600
2 (1:8) 20180719-130700 20180816-132500 20181018-131500 20180719-130400 20180921-133000 20180517-130500

Table B.2: Trace configuration for the imbalanced flows. Every trace is used as a sample trace. The
full name, as available on the website, is equinix-nyc.dirA.< entry >.UTC.anon.pcap

II

Appendix C

Evaluation of the ideal RPS Algorithm

Although the evaluation of the Ideal is not the main goal of this work, we found the obtained
relation helpful in understanding the overall sampling performance that could be achieved with an
ideal buffer. Hence, the following two implementations that can be run on a generic architecture
are compared:

Idea The ideal implementation uses the RPS Algorithm and features an infinitely large buffer, as
opposed to the limited buffer size based on the RPS Algorithm parameters.

Reference The reference implementation uses the RPS Algorithm and has a finite buffer based on the
RPS parameters.

C.0.1 Evaluation

We provide this baseline as the RPS paper never presented the exact effect and number of
disclosures missed due to the reference’s buffer size limitation. The reference implementation
only discloses around 20% of all possible receipts. Nevertheless, the amount is sufficient to reach
the desired accuracy goal.

Stability Increasing the number of similarly scaled flows, the number of collected disclosures
remains without large changes and in all cases, the required number of samples are collected
(Figure C.1). This expected behaviour is explained by removing receipts from arbitrary positions
in the buffer and is a key factor of the RPS Algorithm. The arbitrary removals allow a ’per-flow’
buffer to share excess capacity with other flows. Although the large difference of 5 − 6x in
collected disclosures between the implementation might suggest that Reference would perform
badly compared to the Ideal. However, if an identical number of samples must be collected with
Reference, a much larger buffer would be required, missing the goal behind RPS to use as little
memory as possible. Furthermore, Ideal collects 8x more disclosures than the monitor needs
within a minute.

Capacity sharing Moving to an imbalanced traffic pattern, the number of disclosures for a
lower-rate flow increases as the overall buffer size is increased, as displayed in Figure C.2. This
behaviour can again be attributed to the design of the RPS Algorithm, as the larger-rate flow
makes the excess space available to a lower-rate flow. Comparing disclosures of the Reference
from the ratio 1:1 to 1:8, the absolute disclosure count doubles without explicitly allocating buffer

III

IV

1
1 flow

0 K

50 K

100 K

150 K

200 K

250 K

300 K

350 K Number of disclosures

1 2
2 flows

1 2 3 4
4 flows

1 2 3 4 5 6 7 8
8 flows

Ideal Reference

Figure C.1: Absolute number of collected
disclosures within 1 minute based on the
balanced dataset, the error bars represent the
min and max.

1 2
1:1

0 K

200 K

400 K

600 K

800 K

1000 K

1200 K

1400 K

Number of disclosures

1 2
1:2

1 2
1:4

1 2
1:8

Imbalance factor between flow 1 and 2

Ideal Reference

Figure C.2: Absolute number of collected
disclosures within 1 minute based on the
imbalanced dataset, the error bars represent
the min and max.

capacity for the flow, due to the shared buffer. This again demonstrates the strength of the buffer
sharing in the case of free capacity.

	Declearation of Originality
	Introduction
	Motivation
	Challenges
	Contributions
	Overview

	Retroactive Packet Sampling
	Analyzing network traffic
	Packet Sampling
	Trajectory Sampling
	Delayed Disclosure

	Retroactive Packet Sampling
	Resistance to attacks

	RPS Algorithm
	RPS Parameter Analysis
	Number of samples N
	Collection time T
	Quiet time
	Minimal rate rmin
	Selection probability
	Disclosure probability
	Tofino™ parameters

	Reference Implementation
	Receipt
	Buffer management
	Expected performance

	Programmable Data Planes
	PISA
	The P4 Language
	P4 Features
	Storage
	Traffic manipulation

	Implementation
	Implementation Goals
	Goals
	Non-Goals

	RPS on the Controller
	Header mirroring
	Digest mode
	Interim conclusion about [cha:rps]RPS on the controller

	RPS on the Simple Switch
	From SHA256 to CRC32
	Buffer access in P4
	Naive implementation
	Inverting the [algo:rpspaper]RPS Algorithm

	RPS on the Intel® Tofino™
	Stages
	Storage
	Controller communication
	Timestamps
	Final implementation
	Not considered

	Evaluation
	Hardware resource usage
	Methodology
	Implementations
	Results

	Accuracy
	Simulation Setup
	Methodology
	Implementations
	Overview
	P4 Reference model
	Tofino model

	Performance
	Setup
	Methodology
	Implementation
	Controller-based sampling on the Tofino™

	Conclusion and Outlook
	Future work
	Conclusion

	References
	Average packet size based on CAIDA traces
	Trace configuration
	Evaluation of the ideal [algo:rpspaper]RPS Algorithm
	Evaluation

